Previous |  Up |  Next

Article

Title: A class of integral operators on mixed norm spaces in the unit ball (English)
Author: Li, Songxiao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 3
Year: 2007
Pages: 1013-1023
Summary lang: English
.
Category: math
.
Summary: This article provided some sufficient or necessary conditions for a class of integral operators to be bounded on mixed norm spaces in the unit ball. (English)
Keyword: integral operator
Keyword: mixed norm space
Keyword: boundedness
MSC: 30H05
MSC: 32A36
MSC: 47B35
MSC: 47B38
idZBL: Zbl 1174.47349
idMR: MR2356936
.
Date available: 2009-09-24T11:51:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128222
.
Reference: [1] A.  Benedek and R.  Panzone: The spaces  $L^p$ with mixed norm.Duke Math.  J. 28 (1961), 301–324. MR 0126155, 10.1215/S0012-7094-61-02828-9
Reference: [2] B. R.  Choe: Projections, the weighted Bergman spaces, and the Bloch space.Proc. Am. Math. Soc. 108 (1990), 127–136. Zbl 0684.47022, MR 0991692, 10.1090/S0002-9939-1990-0991692-0
Reference: [3] F.  Forelli and W.  Rudin: Projections on spaces of holomorphic functions in balls.Indiana Univ. Math.  J. 24 (1974), 593–602. MR 0357866
Reference: [4] S.  Gadbois: Mixed-norm generalizations of Bergman space and duality.Proc. Am. Math. Soc. 104 (1988), 1171–1180. MR 0948149, 10.1090/S0002-9939-1988-0948149-3
Reference: [5] C.  Kolaski: A new look at a theorem of Forelli and Rudin.Indiana Univ. Math.  J. 28 (1979), 495–499. Zbl 0412.41023, MR 0529680
Reference: [6] O.  Kurens and K. H.  Zhu: A class of integral operators on the unit ball of  $\mathbb{C}^n$.Integr. Equ. Oper. Theory 56 (2006), 71–82. MR 2256998, 10.1007/s00020-005-1411-3
Reference: [7] Y. M.  Liu: Boundedness of the Bergman type operators on mixed norm space.Proc. Am. Math. Soc. 130 (2002), 2363–2367. MR 1897461, 10.1090/S0002-9939-02-06332-3
Reference: [8] G. B.  Ren and J. H.  Shi: Bergman type operator on mixed norm spaces with applications.Chin. Ann. Math., Ser. B 18 (1997), 265–276. MR 1480002
Reference: [9] G. B.  Ren and J. H.  Shi: Forelli-Rudin type theorem on pluriharmonic Bergman spaces with small exponent.Sci. China, Ser.  A 42 (1999), 1286–1291. MR 1749939, 10.1007/BF02876029
Reference: [10] G. B.  Ren and J. H.  Shi: Gleason’s problem in weighted Bergman space on egg domains.Sci. China, Ser.  A 41 (1998), 225–231. MR 1621125, 10.1007/BF02879040
Reference: [11] A. L.  Shields and D. L.  Williams: Bounded projections, duality and multipliers in spaces of analytic functions.Trans. Am. Math. Soc. 162 (1971), 287–302. MR 0283559
Reference: [12] K. H.  Zhu: The Bergman spaces, the Bloch spaces and Gleason’s problem.Trans. Am. Math. Soc. 309 (1988), 253–268. MR 0931533
Reference: [13] K. H.  Zhu: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics  226.Springer-Verlag, New York, 2005. MR 2115155
.

Files

Files Size Format View
CzechMathJ_57-2007-3_17.pdf 265.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo