Previous |  Up |  Next

Article

Title: Order affine completeness of lattices with Boolean congruence lattices (English)
Author: Kaarli, Kalle
Author: Kuchmei, Vladimir
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 4
Year: 2007
Pages: 1049-1065
Summary lang: English
.
Category: math
.
Summary: This paper grew out from attempts to determine which modular lattices of finite height are locally order affine complete. A surprising discovery was that one can go quite far without assuming the modularity itself. The only thing which matters is that the congruence lattice is finite Boolean. The local order affine completeness problem of such lattices ${\mathbf L}$ easily reduces to the case when ${\mathbf L}$ is a subdirect product of two simple lattices ${\mathbf L}_1$ and ${\mathbf L}_2$. Our main result claims that such a lattice is locally order affine complete iff ${\mathbf L}_1$ and ${\mathbf L}_2$ are tolerance trivial and one of the following three cases occurs: 1) ${\mathbf L}={\mathbf L}_1\times {\mathbf L}_2$, 2) ${\mathbf L}$ is a maximal sublattice of the direct product, 3) ${\mathbf L}$ is the intersection of two maximal sublattices, one containing $\langle 0,1\rangle $ and the other $\langle 1,0\rangle $. (English)
Keyword: order affine completeness
Keyword: congruences of lattices
Keyword: tolerances of lattices
MSC: 06B10
MSC: 08A30
MSC: 08A40
idZBL: Zbl 1174.06304
idMR: MR2357580
.
Date available: 2009-09-24T11:51:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128227
.
Reference: [1] I.  Chajda, B.  Zelinka: Tolerance relation on lattices.Čas. Pěst. Mat. 99 (1974), 394–399. MR 0360380
Reference: [2] K. Kaarli: On varieties generated by functionally complete algebras.Algebra Univers. 29 (1992), 495–502. Zbl 0774.08003, MR 1201174, 10.1007/BF01190776
Reference: [3] G.  Czédli, E.  Horváth, and S.  Radeleczki: On tolerance lattices of algebras in congruence modular lattices.Acta Math. Hung. 100 (2003), 9–17. MR 1984855, 10.1023/A:1024643815068
Reference: [4] P. Hegedűs, P.  P.  Pálfy: Finite modular congruence lattices.Algebra Univers. 54 (2005), 105–120. MR 2217968
Reference: [5] K.  Kaarli, A.  F.  Pixley: Polynomial Completeness in Algebraic Systems.Chapman & Hall/CRC, Boca Raton, 2000. MR 1888967
Reference: [6] M.  Kindermann: Über die Äquivalenz von Ordnungspolynomvollständigkeit und Toleranzeinfachheit endlicher Verbände.Contributions to General Algebra (Proc. Klagenfurt Conf. 1978), Verlag J.  Heyn, Klagenfurt, 1979, pp. 145–149. Zbl 0403.06004, MR 0537415
Reference: [7] D.  Schweigert: Über die endliche, ordnungspolynomvollständige Verbände.Monatsh. Math. 78 (1974), 68–76. MR 0340124, 10.1007/BF01298196
Reference: [8] R.  Wille: Eine Characterisierung endlicher, ordnungspolynomvollständiger Verbände.Arch. Math. (Basel) 28 (1977), 557–560. MR 0447062, 10.1007/BF01223966
Reference: [9] R.  Wille: Über endliche, ordnungaffinvollständige Verbände.Math.  Z. 155 (1977), 103–107. MR 0485604, 10.1007/BF01214209
.

Files

Files Size Format View
CzechMathJ_57-2007-4_1.pdf 313.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo