Previous |  Up |  Next

Article

Title: Nonlinear evolution inclusions arising from phase change models (English)
Author: Colli, Pierluigi
Author: Krejčí, Pavel
Author: Rocca, Elisabetta
Author: Sprekels, Jürgen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 4
Year: 2007
Pages: 1067-1098
Summary lang: English
.
Category: math
.
Summary: The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail. (English)
Keyword: nonlinear and nonlocal evolution equations
Keyword: Cahn-Hilliard type dynamics
Keyword: phase transitions models
Keyword: existence
Keyword: uniqueness
Keyword: long-time behaviour
MSC: 34G25
MSC: 35B40
MSC: 35G25
MSC: 35G30
MSC: 47J35
MSC: 74H40
MSC: 82B26
MSC: 82C24
idZBL: Zbl 1174.35021
idMR: MR2357581
.
Date available: 2009-09-24T11:51:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128228
.
Reference: [1] A. Ambrosetti, G. Prodi: A Primer of Nonlinear Analysis. Cambridge Stud. Adv. Math., Vol. 34.Cambridge Univ. Press, Cambridge, 1995. MR 1336591
Reference: [2] J.-P. Aubin, I. Ekeland: Applied Nonlinear Analysis.John Wiley & Sons, New York, 1984. MR 0749753
Reference: [3] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff, Leyden, 1976. Zbl 0328.47035, MR 0390843
Reference: [4] P. Bates, J. Han: The Neumann boundary problem for a nonlocal Cahn-Hilliard equation.J. Differ. Equations 212 (2005), 235–277. MR 2129092, 10.1016/j.jde.2004.07.003
Reference: [5] H. Brezis: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Math. Studies, Vol.  5.North-Holland, Amsterdam, 1973. MR 0348562
Reference: [6] M. Brokate, J. Sprekels: Hysteresis and Phase Transitions. Appl. Math. Sci., Vol.  121.Springer-Verlag, New York, 1996. MR 1411908
Reference: [7] J. Cahn, J. Hilliard: Free energy of a nonuniform system. I.  Interfacial free energy.J. Chem. Phys. 28 (1958), 258–267.
Reference: [8] C. K. Chen, P. C. Fife: Nonlocal models of phase transitions in solids.Adv. Math. Sci. Appl. 10 (2000), 821–849. MR 1807453
Reference: [9] P. Colli: On some doubly nonlinear evolution equations in Banach spaces.Japan J.  Indust. Appl. Math. 9 (1992), 181–203. Zbl 0757.34051, MR 1170721, 10.1007/BF03167565
Reference: [10] P. Colli, A. Visintin: On a class of doubly nonlinear evolution equations.Comm. Partial Differential Equations 15 (1990), 737–756. MR 1070845, 10.1080/03605309908820706
Reference: [11] N. Dunford, J.T. Schwartz: Linear Operators. Part  I. General Theory.Interscience Publishers, New York, 1958. MR 1009162
Reference: [12] T. Fukao, N. Kenmochi, and I. Pawlow: Transmission problems arising in Czochralski process of crystal growth.In: Mathematical Aspects of Modelling Structure Formation Phenomena. GAKUTO Internat. Ser. Math. Sci. Appl., Vol.  17, N. Kenmochi, M. Niezgódka, and M. Ôtani (eds.), Gakkotosho, Tokyo, 2001, pp. 228–243. MR 1932116
Reference: [13] H. Gajewski: On a nonlocal model of non-isothermal phase separation.Adv. Math. Sci. Appl. 12 (2002), 569–586. Zbl 1039.80001, MR 1943981
Reference: [14] H. Gajewski, K. Zacharias: On a nonlocal phase separation model.J.  Math. Anal. Appl. 286 (2003), 11–31. MR 2009615, 10.1016/S0022-247X(02)00425-0
Reference: [15] G. Giacomin, J. L. Lebowitz: Phase segregation dynamics in particle systems with long range interactions. I.  Macroscopic limits.J.  Statist. Phys. 87 (1997), 37–61. MR 1453735
Reference: [16] G. Giacomin, J. L. Lebowitz: Phase segregation dynamics in particle systems with long range interactions. II.  Interface motion.SIAM J.  Appl. Math. 58 (1998), 1707–1729. MR 1638739, 10.1137/S0036139996313046
Reference: [17] A. Haraux: Systèmes dynamiques dissipatifs et applications. Rech. Math. Appl., Vol.  17.Masson, Paris, 1991. MR 1084372
Reference: [18] E. Hille, R. Phillips: Functional Analysis and Semigroups. Amer. Math. Soc. Colloq. Publ., Vol. 31.Am. Math. Soc., Providence, 1957. MR 0089373
Reference: [19] N. Kenmochi, M. Niezgódka, and I. Pawlow: Subdifferential operator approach to the Cahn-Hilliard equation with constraint.J. Differ. Equations 117 (1995), 320–356. MR 1325801, 10.1006/jdeq.1995.1056
Reference: [20] A. Miranville: Generalized Cahn-Hilliard equations based on a microforce balance.J.  Appl. Math. 4 (2003), 165–185. Zbl 1031.35003, MR 1981620
Reference: [21] J. F.  Rodrigues: Variational methods in the Stefan problem.In: Phase Transitions and Hysteresis. Lecture Notes in Math., Vol.  1584, A. Visintin (ed.), Springer-Verlag, Berlin, 1994, pp. 147–212. Zbl 0819.35154, MR 1321833
Reference: [22] M. Schechter: Principles of Functional Analysis.Academic Press, New York-London, 1971. Zbl 0211.14501, MR 0445263
Reference: [23] J. Simon: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura Appl. 146 (1987), 65–96. MR 0916688
Reference: [24] K. Yosida: Functional Analysis.Springer-Verlag, Berlin, 1965. Zbl 0126.11504
.

Files

Files Size Format View
CzechMathJ_57-2007-4_2.pdf 439.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo