Title:
|
Nonlinear evolution inclusions arising from phase change models (English) |
Author:
|
Colli, Pierluigi |
Author:
|
Krejčí, Pavel |
Author:
|
Rocca, Elisabetta |
Author:
|
Sprekels, Jürgen |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
4 |
Year:
|
2007 |
Pages:
|
1067-1098 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail. (English) |
Keyword:
|
nonlinear and nonlocal evolution equations |
Keyword:
|
Cahn-Hilliard type dynamics |
Keyword:
|
phase transitions models |
Keyword:
|
existence |
Keyword:
|
uniqueness |
Keyword:
|
long-time behaviour |
MSC:
|
34G25 |
MSC:
|
35B40 |
MSC:
|
35G25 |
MSC:
|
35G30 |
MSC:
|
47J35 |
MSC:
|
74H40 |
MSC:
|
82B26 |
MSC:
|
82C24 |
idZBL:
|
Zbl 1174.35021 |
idMR:
|
MR2357581 |
. |
Date available:
|
2009-09-24T11:51:49Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128228 |
. |
Reference:
|
[1] A. Ambrosetti, G. Prodi: A Primer of Nonlinear Analysis. Cambridge Stud. Adv. Math., Vol. 34.Cambridge Univ. Press, Cambridge, 1995. MR 1336591 |
Reference:
|
[2] J.-P. Aubin, I. Ekeland: Applied Nonlinear Analysis.John Wiley & Sons, New York, 1984. MR 0749753 |
Reference:
|
[3] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff, Leyden, 1976. Zbl 0328.47035, MR 0390843 |
Reference:
|
[4] P. Bates, J. Han: The Neumann boundary problem for a nonlocal Cahn-Hilliard equation.J. Differ. Equations 212 (2005), 235–277. MR 2129092, 10.1016/j.jde.2004.07.003 |
Reference:
|
[5] H. Brezis: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Math. Studies, Vol. 5.North-Holland, Amsterdam, 1973. MR 0348562 |
Reference:
|
[6] M. Brokate, J. Sprekels: Hysteresis and Phase Transitions. Appl. Math. Sci., Vol. 121.Springer-Verlag, New York, 1996. MR 1411908 |
Reference:
|
[7] J. Cahn, J. Hilliard: Free energy of a nonuniform system. I. Interfacial free energy.J. Chem. Phys. 28 (1958), 258–267. |
Reference:
|
[8] C. K. Chen, P. C. Fife: Nonlocal models of phase transitions in solids.Adv. Math. Sci. Appl. 10 (2000), 821–849. MR 1807453 |
Reference:
|
[9] P. Colli: On some doubly nonlinear evolution equations in Banach spaces.Japan J. Indust. Appl. Math. 9 (1992), 181–203. Zbl 0757.34051, MR 1170721, 10.1007/BF03167565 |
Reference:
|
[10] P. Colli, A. Visintin: On a class of doubly nonlinear evolution equations.Comm. Partial Differential Equations 15 (1990), 737–756. MR 1070845, 10.1080/03605309908820706 |
Reference:
|
[11] N. Dunford, J.T. Schwartz: Linear Operators. Part I. General Theory.Interscience Publishers, New York, 1958. MR 1009162 |
Reference:
|
[12] T. Fukao, N. Kenmochi, and I. Pawlow: Transmission problems arising in Czochralski process of crystal growth.In: Mathematical Aspects of Modelling Structure Formation Phenomena. GAKUTO Internat. Ser. Math. Sci. Appl., Vol. 17, N. Kenmochi, M. Niezgódka, and M. Ôtani (eds.), Gakkotosho, Tokyo, 2001, pp. 228–243. MR 1932116 |
Reference:
|
[13] H. Gajewski: On a nonlocal model of non-isothermal phase separation.Adv. Math. Sci. Appl. 12 (2002), 569–586. Zbl 1039.80001, MR 1943981 |
Reference:
|
[14] H. Gajewski, K. Zacharias: On a nonlocal phase separation model.J. Math. Anal. Appl. 286 (2003), 11–31. MR 2009615, 10.1016/S0022-247X(02)00425-0 |
Reference:
|
[15] G. Giacomin, J. L. Lebowitz: Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits.J. Statist. Phys. 87 (1997), 37–61. MR 1453735 |
Reference:
|
[16] G. Giacomin, J. L. Lebowitz: Phase segregation dynamics in particle systems with long range interactions. II. Interface motion.SIAM J. Appl. Math. 58 (1998), 1707–1729. MR 1638739, 10.1137/S0036139996313046 |
Reference:
|
[17] A. Haraux: Systèmes dynamiques dissipatifs et applications. Rech. Math. Appl., Vol. 17.Masson, Paris, 1991. MR 1084372 |
Reference:
|
[18] E. Hille, R. Phillips: Functional Analysis and Semigroups. Amer. Math. Soc. Colloq. Publ., Vol. 31.Am. Math. Soc., Providence, 1957. MR 0089373 |
Reference:
|
[19] N. Kenmochi, M. Niezgódka, and I. Pawlow: Subdifferential operator approach to the Cahn-Hilliard equation with constraint.J. Differ. Equations 117 (1995), 320–356. MR 1325801, 10.1006/jdeq.1995.1056 |
Reference:
|
[20] A. Miranville: Generalized Cahn-Hilliard equations based on a microforce balance.J. Appl. Math. 4 (2003), 165–185. Zbl 1031.35003, MR 1981620 |
Reference:
|
[21] J. F. Rodrigues: Variational methods in the Stefan problem.In: Phase Transitions and Hysteresis. Lecture Notes in Math., Vol. 1584, A. Visintin (ed.), Springer-Verlag, Berlin, 1994, pp. 147–212. Zbl 0819.35154, MR 1321833 |
Reference:
|
[22] M. Schechter: Principles of Functional Analysis.Academic Press, New York-London, 1971. Zbl 0211.14501, MR 0445263 |
Reference:
|
[23] J. Simon: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura Appl. 146 (1987), 65–96. MR 0916688 |
Reference:
|
[24] K. Yosida: Functional Analysis.Springer-Verlag, Berlin, 1965. Zbl 0126.11504 |
. |