Previous |  Up |  Next

Article

Keywords:
generalized $MV$-algebra; representability; congruence relation; unital lattice ordered group
Summary:
A generalized $MV$-algebra $\mathcal A$ is called representable if it is a subdirect product of linearly ordered generalized $MV$-algebras. Let $S$ be the system of all congruence relations $\rho $ on $\mathcal A$ such that the quotient algebra $\mathcal A/\rho $ is representable. In the present paper we prove that the system $S$ has a least element.
References:
[1] B. Banaschewski: On lattice-ordered groups. Fund. Math. 55 (1964), 113–122. MR 0168672 | Zbl 0129.01803
[2] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967. MR 0227053 | Zbl 0153.02501
[3] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. Zbl 0258.06011
[4] A. Dvurečenskij,: Pseudo MV-algebras are intervals of $\ell $-groups. J. Austral. Math. Soc. 72 (2002), 427–445. DOI 10.1017/S1446788700036806 | MR 1902211
[5] A. Dvurečenskij, S. Pulmannová: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht, 2000. MR 1861369
[6] G. Georgescu, A. Iorgulescu: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. In: The Proceedings of the Fourth International Symposium on Economic Informatics, INFOREC, Bucharest, 6–9 May, Romania, 1999, pp. 961–968. MR 1730100
[7] G. Georgescu, A. Iorgulescu: Pseudo $MV$-algebras. Multiple-Valued Logic 6 (2001), 95–135. MR 1817439
[8] J. Jakubík: Normal prime filters of a lattice ordered group. Czech. Math. J. 24 (1974), 91–96. MR 0347702
[9] J. Jakubík: Subdirect product decompositions of MV-algebras. Czech. Math. J. 49 (1999), 163–173. DOI 10.1023/A:1022472528113 | MR 1676813
[10] J. Rachůnek: A non-commutative generalization of $MV$-algebras. Czech. Math. J. 52 (2002), 255–273. DOI 10.1023/A:1021766309509
Partner of
EuDML logo