Previous |  Up |  Next

Article

Title: Banaschewski’s theorem for generalized $MV$-algebras (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 4
Year: 2007
Pages: 1099-1105
Summary lang: English
.
Category: math
.
Summary: A generalized $MV$-algebra $\mathcal A$ is called representable if it is a subdirect product of linearly ordered generalized $MV$-algebras. Let $S$ be the system of all congruence relations $\rho $ on $\mathcal A$ such that the quotient algebra $\mathcal A/\rho $ is representable. In the present paper we prove that the system $S$ has a least element. (English)
Keyword: generalized $MV$-algebra
Keyword: representability
Keyword: congruence relation
Keyword: unital lattice ordered group
MSC: 06D35
MSC: 06F15
idZBL: Zbl 1174.06318
idMR: MR2357582
.
Date available: 2009-09-24T11:51:55Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128229
.
Reference: [1] B. Banaschewski: On lattice-ordered groups.Fund. Math. 55 (1964), 113–122. Zbl 0129.01803, MR 0168672, 10.4064/fm-55-2-113-122
Reference: [2] G. Birkhoff: Lattice Theory.Third Edition, Providence, 1967. Zbl 0153.02501, MR 0227053
Reference: [3] P. Conrad: Lattice Ordered Groups.Tulane University, 1970. Zbl 0258.06011
Reference: [4] A. Dvurečenskij,: Pseudo MV-algebras are intervals of $\ell $-groups.J. Austral. Math. Soc. 72 (2002), 427–445. MR 1902211, 10.1017/S1446788700036806
Reference: [5] A. Dvurečenskij, S. Pulmannová: New Trends in Quantum Structures.Kluwer Academic Publishers, Dordrecht, 2000. MR 1861369
Reference: [6] G. Georgescu, A. Iorgulescu: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras.In: The Proceedings of the Fourth International Symposium on Economic Informatics, INFOREC, Bucharest, 6–9 May, Romania, 1999, pp. 961–968. MR 1730100
Reference: [7] G. Georgescu, A. Iorgulescu: Pseudo $MV$-algebras.Multiple-Valued Logic 6 (2001), 95–135. MR 1817439
Reference: [8] J. Jakubík: Normal prime filters of a lattice ordered group.Czech. Math. J. 24 (1974), 91–96. MR 0347702
Reference: [9] J. Jakubík: Subdirect product decompositions of MV-algebras.Czech. Math. J. 49 (1999), 163–173. MR 1676813, 10.1023/A:1022472528113
Reference: [10] J. Rachůnek: A non-commutative generalization of $MV$-algebras.Czech. Math. J. 52 (2002), 255–273. MR 1905434, 10.1023/A:1021766309509
.

Files

Files Size Format View
CzechMathJ_57-2007-4_3.pdf 247.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo