Previous |  Up |  Next

Article

Title: The Neumann problem for the Laplace equation on general domains (English)
Author: Medková, Dagmar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 4
Year: 2007
Pages: 1107-1139
Summary lang: English
.
Category: math
.
Summary: The solution of the weak Neumann problem for the Laplace equation with a distribution as a boundary condition is studied on a general open set $G$ in the Euclidean space. It is shown that the solution of the problem is the sum of a constant and the Newtonian potential corresponding to a distribution with finite energy supported on $\partial G$. If we look for a solution of the problem in this form we get a bounded linear operator. Under mild assumptions on $G$ a necessary and sufficient condition for the solvability of the problem is given and the solution is constructed. (English)
Keyword: Laplace equation
Keyword: Neumann problem
Keyword: potential
Keyword: boundary integral equation method
MSC: 31B10
MSC: 35D05
MSC: 35J05
MSC: 35J25
idZBL: Zbl 1174.31305
idMR: MR2357583
.
Date available: 2009-09-24T11:52:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128230
.
Reference: [1] D. R.  Adams, L. I.  Hedberg: Function Spaces and Potential Theory. Grundlehren der mathematischen Wissenschaften  314.Springer-Verlag, Berlin-Heidelberg, 1995. MR 1411441
Reference: [2] D. H.  Armitage, S. J.  Gardiner: Classical Potential Theory.Springer-Verlag, London, 2001. MR 1801253
Reference: [3] J.  Deny: Les potentiels d’énergie finie.Acta Math. 82 (1950), 107–183. Zbl 0034.36201, MR 0036371, 10.1007/BF02398276
Reference: [4] L. E. Fraenkel: Introduction to Maximum Principles and Symmetry in Elliptic Problems.Cambridge University Press, Cambridge, 2000. Zbl 0947.35002, MR 1751289
Reference: [5] L. L.  Helms: Introduction to Potential Theory. Pure and Applied Mathematics  22.John Wiley & Sons, 1969. MR 0261018
Reference: [6] H.  Heuser: Funktionalanalysis.Teubner, Stuttgart, 1975. Zbl 0309.47001, MR 0482021
Reference: [7] S.  Jerison, C. E.  Kenig: Boundary behavior of harmonic functions in non-tangentially accessible domains.Adv. Math. 47 (1982), 80–147. 10.1016/0001-8708(82)90055-X
Reference: [8] P. W.  Jones: Quasiconformal mappings and extendability of functions in Sobolev spaces.Acta Math. 147 (1981), 71–88. Zbl 0489.30017, MR 0631089, 10.1007/BF02392869
Reference: [9] J. J.  Koliha: A generalized Drazin inverse.Glasgow Math.  J. 38 (1996), 367–381. Zbl 0897.47002, MR 1417366, 10.1017/S0017089500031803
Reference: [10] P.  Koskela, H.  Tuominen: Measure density and extendability of Sobolev functions.(to appear).
Reference: [11] J.  Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics  823.Springer-Verlag, Berlin, 1980, pp. . MR 0590244
Reference: [12] N. L.  Landkof: Fundamentals of Modern Potential Theory.Izdat. Nauka, Moscow, 1966. (Russian) MR 0214795
Reference: [13] V. G.  Maz’ya, S. V.  Poborchi: Differentiable Functions on Bad Domains.World Scientific Publishing, Singapore, 1997. MR 1643072
Reference: [14] W.  McLean: Strongly Elliptic Systems and Boundary Integral Equations.Cambridge University Press, Cambridge, 2000. Zbl 0948.35001, MR 1742312
Reference: [15] D.  Medková: Solution of the Robin problem for the Laplace equation.Appl. Math. 43 (1998), 133–155. MR 1609158, 10.1023/A:1023267018214
Reference: [16] D.  Medková: Solution of the Neumann problem for the Laplace equation.Czechoslovak Math.  J. 48 (1998), 768–784. 10.1023/A:1022447908645
Reference: [17] C.  Miranda: Differential Equations of Elliptic Type.Springer-Verlag, Berlin, 1970. Zbl 0198.14101, MR 0284700
Reference: [18] I.  Netuka: Smooth surfaces with infinite cyclic variation.Čas. Pěst. Mat. 96 (1971), 86–101. (Czech) Zbl 0204.08002, MR 0284553
Reference: [19] M.  Schechter: Principles of Functional Analysis.Am. Math. Soc., Providence, 2002. MR 1861991
Reference: [20] G. E.  Shilov: Mathematical Analysis. Second Special Course.Nauka, Moskva, 1965. (Russian) MR 0219869
Reference: [21] Ch. G.  Simader, H.  Sohr: The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains. Pitman Research Notes in Mathematics Series  360.Addison Wesley Longman Inc., Essex, 1996. MR 1454361
Reference: [22] J. Stampfli: Hyponormal operators.Pacific J.  Math. 12 (1962), 1453–1458. Zbl 0129.08701, MR 0149282, 10.2140/pjm.1962.12.1453
Reference: [23] O. Steinbach, W. L. Wendland: On C.  Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries.J.  Math. Anal. Appl. 262 (2001), 733–748. MR 1859336, 10.1006/jmaa.2001.7615
Reference: [24] G.  Verchota: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains.J.  Funct. Anal. 59 (1984), 572–611. Zbl 0589.31005, MR 0769382, 10.1016/0022-1236(84)90066-1
Reference: [25] K.  Yosida: Functional Analysis.Springer-Verlag, Berlin, 1965. Zbl 0126.11504
.

Files

Files Size Format View
CzechMathJ_57-2007-4_4.pdf 451.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo