Previous |  Up |  Next

Article

Title: Traces of functions with a dominating mixed derivative in $\Bbb R^3$ (English)
Author: Vybíral, Jan
Author: Sickel, Winfried
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 4
Year: 2007
Pages: 1239-1273
Summary lang: English
.
Category: math
.
Summary: We investigate traces of functions, belonging to a class of functions with dominating mixed smoothness in ${\mathbb{R}}^3$, with respect to planes in oblique position. In comparison with the classical theory for isotropic spaces a few new phenomenona occur. We shall present two different approaches. One is based on the use of the Fourier transform and restricted to $p=2$. The other one is applicable in the general case of Besov-Lizorkin-Triebel spaces and based on atomic decompositions. (English)
Keyword: Sobolev spaces of dominating mixed smoothness
Keyword: Besov and Lizorkin-Triebel classes of dominating mixed smoothness
Keyword: Fourier analytic characterizations
Keyword: atomic decompositions
Keyword: traces on hyperplanes in oblique position
MSC: 42B35
MSC: 46E35
idZBL: Zbl 1174.42027
idMR: MR2357589
.
Date available: 2009-09-24T11:52:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128236
.
Reference: [1] D. R. Adams and L. I. Hedberg: Function spaces and potential theory.Springer, Berlin, 1996. MR 1411441
Reference: [2] T. I. Amanov: Spaces of differentiable functions with dominating mixed derivatives.Nauka Kaz. SSR, Alma-Ata, 1976. (Russian) MR 0860038
Reference: [3] D. B. Bazarkhanov: Characterizations of the Nikol’skii-Besov and Lizorkin-Triebel function spaces of mixed smoothness.Trudy Mat. Inst. Steklov 243 (2003), 53-65. Zbl 1090.46025, MR 2049462
Reference: [4] H.-J. Bungartz and M. Griebel: Sparse grids.Acta Numerica (2004), 1–123. MR 2249147
Reference: [5] M. Frazier and B. Jawerth: Decomposition of Besov spaces.Indiana Univ. Math. J. 34 (1985), 777–799. MR 0808825, 10.1512/iumj.1985.34.34041
Reference: [6] M. Frazier and B. Jawerth: A discrete transform and decomposition of distribution spaces.J. Funct. Anal. 93 (1990), 34–170. MR 1070037, 10.1016/0022-1236(90)90137-A
Reference: [7] I. W. Gelman and W. G. Maz’ya: Abschätzungen für Differentialoperatoren im Halbraum.Akademie-Verlag, Berlin, 1981. MR 0644480
Reference: [8] M. Griebel, P. Oswald and T. Schiekofer: Sparse grids for boundary integral equations.Numer. Math 83 (1999), 279–312. MR 1712687, 10.1007/s002110050450
Reference: [9] P. Grisvard: Commutativité de deux fonctuers d’interpolation et applications.J. Math. Pures Appl. 45 (1966), 143–290. MR 0221309
Reference: [10] L. I. Hedberg and Y. Netrusov: An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation.Memoirs of the AMS (to appear). MR 2326315
Reference: [11] R. Hochmuth: A $\varphi $-transform result for spaces with dominating mixed smoothness properties.Result. Math. 33 (1998), 106–119. Zbl 0905.46017, MR 1610139, 10.1007/BF03322075
Reference: [12] P. I. Lizorkin and S. M. Nikol’skij: Classification of differentiable functions on the basis of spaces with dominating mixed smoothness.Trudy Mat. Inst. Steklov 77 (1965), 143–167. MR 0192223
Reference: [13] S. M. Nikol’skij: On boundary properties of differentiable functions of several variables.Dokl. Akad. Nauk SSSR 146 (1962), 542–545. MR 0143064
Reference: [14] S. M. Nikol’skij: On stable boundary values of differentiable functions of several variables.Mat. Sbornik 61 (1963), 224–252. MR 0156182
Reference: [15] P.-A. Nitsche: Sparse approximation of singularity functions.Constr. Approx. 21 (2005), 63–81. Zbl 1073.65118, MR 2105391
Reference: [16] M. C. Rodríguez Fernández: Über die Spur von Funktionen mit dominierenden gemischten Glattheitseigenschaften auf der Diagonale, Ph.D-thesis, Jena.1997.
Reference: [17] H.-J. Schmeisser: Vector-valued Sobolev and Besov spaces.Teubner-Texte zur Math. 96 (1987), 4-44. Zbl 0666.46039, MR 0932287
Reference: [18] H.-J. Schmeisser and H. Triebel: Topics in Fourier analysis and function spaces.Wiley, Chichester, 1987. MR 0891189
Reference: [19] G. Sparr: Interpolation of several Banach spaces.Ann. Mat. Pura Appl. 99 (1974), 247–316. Zbl 0282.46022, MR 0372641, 10.1007/BF02413728
Reference: [20] H. Triebel: A diagonal embedding theorem for function spaces with dominating mixed smoothness properties.Banach Center Publications, Warsaw 22 (1989), 475–486. Zbl 0707.46020, MR 1097217
Reference: [21] H. Triebel: Fractals and Spectra.Birkhäuser, Basel, 1997. Zbl 0898.46030, MR 1484417
Reference: [22] H. Triebel: The Structure of Functions.Birkhäuser, Basel, 2001. Zbl 0984.46021, MR 1851996
Reference: [23] J. Vybíral: Characterisations of function spaces with dominating mixed smoothness properties.Jenaer Schriften zur Mathematik und Informatik, Math/Inf/15/03, 2003.
Reference: [24] J. Vybíral: Function spaces with dominating mixed smoothness.Diss. Math. 436 (2006), 1–73. MR 2231066
Reference: [25] J. Vybíral: A diagonal embedding theorem for function spaces with dominating mixed smoothness.Funct. et Approx. 33 (2005), 101–120. MR 2274153
Reference: [27] H. Yserentant: On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives.Numer. Math. 98 (2004), 731–759. Zbl 1062.35100, MR 2099319, 10.1007/s00211-003-0498-1
Reference: [28] H. Yserentant: Sparse grid spaces for the numerical solution of the electronic Schrödinger equation.Numer. Math. 101 (2005), 381–389. Zbl 1084.65125, MR 2195349, 10.1007/s00211-005-0581-x
.

Files

Files Size Format View
CzechMathJ_57-2007-4_10.pdf 465.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo