Previous |  Up |  Next

Article

Title: Slim groupoids (English)
Author: Ježek, J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 4
Year: 2007
Pages: 1275-1288
Summary lang: English
.
Category: math
.
Summary: Slim groupoids are groupoids satisfying $x(yz)\=xz$. We find all simple slim groupoids and all minimal varieties of slim groupoids. Every slim groupoid can be embedded into a subdirectly irreducible slim groupoid. The variety of slim groupoids has the finite embeddability property, so that the word problem is solvable. We introduce the notion of a strongly nonfinitely based slim groupoid (such groupoids are inherently nonfinitely based) and find all strongly nonfinitely based slim groupoids with at most four elements; up to isomorphism, there are just two such groupoids. (English)
Keyword: groupoid
Keyword: variety
Keyword: nonfinitely based
MSC: 08B15
MSC: 20N02
idZBL: Zbl 1161.20055
idMR: MR2357590
.
Date available: 2009-09-24T11:52:48Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128237
.
Reference: [1] T. Evans: Embeddability and the word problem.J. London Math. Soc. 28 (1953), 76–80. Zbl 0050.02801, MR 0053915
Reference: [2] R. McKenzie: Tarski’s finite basis problem is undecidable.Int. J. Algebra and Computation 6 (1996), 49–104. Zbl 0844.08011, MR 1371734, 10.1142/S0218196796000040
Reference: [3] R. McKenzie, G. McNulty and W. Taylor: Algebras, Lattices, Varieties, Volume I.Wadsworth & Brooks/Cole, Monterey, CA, 1987. MR 0883644
.

Files

Files Size Format View
CzechMathJ_57-2007-4_11.pdf 292.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo