Previous |  Up |  Next

Article

Title: Graded quaternion symbol equivalence of function fields (English)
Author: Koprowski, Przemysław
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 4
Year: 2007
Pages: 1311-1319
Summary lang: English
.
Category: math
.
Summary: We present criteria for a pair of maps to constitute a quaternion-symbol equivalence (or a Hilbert-symbol equivalence if we deal with global function fields) expressed in terms of vanishing of the Clifford invariant. In principle, we prove that a local condition of a quaternion-symbol equivalence can be transcribed from the Brauer group to the Brauer-Wall group. (English)
Keyword: Brauer group
Keyword: Brauer-Wall group
Keyword: Witt equivalence
MSC: 11E10
MSC: 11E81
MSC: 14H05
MSC: 14P05
MSC: 16K50
idZBL: Zbl 1190.11029
idMR: MR2357592
.
Date available: 2009-09-24T11:53:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128239
.
Reference: [1] A. Czogała: Równowa.zność Hilberta ciał globalnych.Volume 1969 of Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia]. Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2001. MR 1852938
Reference: [2] M. Knebusch: On algebraic curves over real closed fields. II.Math. Z. 151 (1976), 189–205. Zbl 0328.14012, MR 0441979
Reference: [3] P. Koprowski: Local-global principle for Witt equivalence of function fields over global fields.Colloq. Math. 91 (2002), 293–302. Zbl 1030.11017, MR 1898636, 10.4064/cm91-2-8
Reference: [4] P. Koprowski: Witt equivalence of algebraic function fields over real closed fields.Math. Z. 242 (2002), 323–345. Zbl 1067.11020, MR 1980626, 10.1007/s002090100336
Reference: [5] P. Koprowski: Integral equivalence of real algebraic function fields.Tatra Mt. Math. Publ. 32 (2005), 53–61. Zbl 1150.11420, MR 2206911
Reference: [6] T. Y. Lam: Introduction to quadratic forms over fields.Volume 67 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2005. Zbl 1068.11023, MR 2104929
Reference: [7] R. Perlis, K. Szymiczek, P. E. Conner and R. Litherland: Matching Witts with global fields.In Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), volume 155 of Contemp. Math., pages 365–387. Amer. Math. Soc., Providence, RI, 1994. MR 1260721
Reference: [8] K. Szymiczek: Matching Witts locally and globally.Math. Slovaca 41 (1991), 315–330. Zbl 0766.11023, MR 1126669
Reference: [9] K. Szymiczek: Witt equivalence of global fields.Comm. Algebra 19 (1991), 1125–1149. Zbl 0724.11020, MR 1102331, 10.1080/00927879108824194
Reference: [10] K. Szymiczek: Hilbert-symbol equivalence of number fields.Tatra Mt. Math. Publ. 11 (1997), 7–16. Zbl 0978.11012, MR 1475500
Reference: [11] K. Szymiczek: A characterization of tame Hilbert-symbol equivalence.Acta Math. Inform. Univ. Ostraviensis 6 (1998), 191–201. Zbl 1024.11022, MR 1822530
.

Files

Files Size Format View
CzechMathJ_57-2007-4_13.pdf 278.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo