Previous |  Up |  Next

Article

Title: Varieties of idempotent slim groupoids (English)
Author: Ježek, J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 4
Year: 2007
Pages: 1289-1309
Summary lang: English
.
Category: math
.
Summary: Idempotent slim groupoids are groupoids satisfying $xx\=x$ and $x(yz)\=xz$. We prove that the variety of idempotent slim groupoids has uncountably many subvarieties. We find a four-element, inherently nonfinitely based idempotent slim groupoid; the variety generated by this groupoid has only finitely many subvarieties. We investigate free objects in some varieties of idempotent slim groupoids determined by permutational equations. (English)
Keyword: groupoid
Keyword: variety
Keyword: nonfinitely based
MSC: 08B15
MSC: 20N02
idZBL: Zbl 1161.20056
idMR: MR2357591
.
Date available: 2009-09-24T11:52:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128238
.
Reference: [1] S. Crvenković and J. Dudek: Rectangular groupoids.Czech. Math. J. 35 (1985), 405–414. MR 0803035
Reference: [2] J. A. Gerhard: The lattice of equational classes of idempotent semigroups.J. Algebra 15 (1970), 195–224. Zbl 0194.02701, MR 0263953, 10.1016/0021-8693(70)90073-6
Reference: [3] E. Jacobs and R. Schwabauer: The lattice of equational classes of algebras with one unary operation.Ann. of Math. 71 (1964), 151–155. MR 0162740
Reference: [4] J. Ježek: Slim groupoids.(to appear). MR 2357590
Reference: [5] R. McKenzie, G. McNulty and W. Taylor: Algebras, Lattices, Varieties, Volume I.Wadsworth & Brooks/Cole, Monterey, CA, 1987. MR 0883644
.

Files

Files Size Format View
CzechMathJ_57-2007-4_12.pdf 335.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo