Previous |  Up |  Next

Article

Title: On a theorem of Cantor-Bernstein type for algebras (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 1
Year: 2008
Pages: 1-14
Summary lang: English
.
Category: math
.
Summary: Freytes proved a theorem of Cantor-Bernstein type for algbras; he applied certain sequences of central elements of bounded lattices. The aim of the present paper is to extend the mentioned result to the case when the lattices under consideration need not be bounded; instead of sequences of central elements we deal with sequences of internal direct factors of lattices. (English)
Keyword: lattice
Keyword: $\mathcal L^*$-variety
Keyword: center
Keyword: internal direct factor
MSC: 06B99
idZBL: Zbl 1174.06308
idMR: MR2402522
.
Date available: 2009-09-24T11:53:10Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128242
.
Reference: [1] R.  Cignoli, I. D.  D’Ottaviano, and D.  Mundici: Algebraic Foundations of Many-Valued Reasoning.Kluwer Academic Publishers, Dordrecht, 2000. MR 1786097
Reference: [2] A.  De Simone, D.  Mundici, and M.  Navara: A Cantor-Bernstein theorem for $\sigma $-complete $MV$-algebras.Czechoslovak Math.  J. 53 (2003), 437–447. MR 1983464, 10.1023/A:1026299723322
Reference: [3] A.  De Simone, M.  Navara, and P.  Pták: On interval homogeneous orthomodular lattices.Commentat. Math. Univ. Carolinae 42 (2001), 23–30. MR 1825370
Reference: [4] A.  Dvurečenskij: Central elements and Cantor-Bernstein’s theorem for pseudo-effect algebras.J.  Aust. Math. Soc. 74 (2003), 121–143. MR 1948263, 10.1017/S1446788700003177
Reference: [5] H.  Freytes: An algebraic version of the Cantor-Bernstein-Schröder theorem.Czechoslovak Math.  J. 54 (2004), 609–621. Zbl 1080.06008, MR 2086720, 10.1007/s10587-004-6412-x
Reference: [6] G.  Georgescu, A.  Iorgulescu: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras.Proc. Fourth Int. Symp. Econ. Informatics, Bucharest, 1999, pp. 961–968. MR 1730100
Reference: [7] G.  Georgescu, A.  Iorgulescu: Pseudo $MV$-algebras.Multiple-valued Logics 6 (2001), 95–135. MR 1817439
Reference: [8] J.  Hashimoto: On the product decomposition of partially ordered sets.Math. Jap. 1 (1948), 120–123. Zbl 0041.37801, MR 0030502
Reference: [9] J.  Jakubík: Direct product decompositions of partially ordered groups.Czechoslovak Math.  J. 10 (1960), 231–243. (Russian)
Reference: [10] J.  Jakubík: Cantor-Bernstein theorem for lattice ordered groups.Czechoslovak Math.  J. 22 (1972), 159-175. MR 0297666
Reference: [11] J.  Jakubík, M.  Csontóová: Convex isomorphisms of directed multilattices.Math. Bohem. 118 (1993), 359–378. MR 1251882
Reference: [12] J.  Jakubík: Complete lattice ordered groups with strong units.Czechoslovak Math.  J. 46 (1996), 221–230. MR 1388611
Reference: [13] J.  Jakubík: Convex isomorphisms of archimedean lattice ordered groups.Mathware and Soft Computing 5 (1998), 49–56. MR 1632739
Reference: [14] J.  Jakubík: Cantor-Bernstein theorem for $MV$-algebras.Czechoslovak Math.  J. 49 (1999), 517–526. MR 1708370, 10.1023/A:1022467218309
Reference: [15] J.  Jakubík: Direct product decompositions of infinitely distributive lattices.Math. Bohemica 125 (2000), 341–354. MR 1790125
Reference: [16] J.  Jakubík: Convex mappings of archimedean $MV$-algebras.Math. Slovaca 51 (2001), 383–391. MR 1864107
Reference: [17] J.  Jakubík: Direct product decompositions of pseudo $MV$-algebras.Arch. Math. 37 (2002), 131–142. MR 1838410
Reference: [18] J.  Jakubík: Cantor-Bernstein theorem for lattices.Math. Bohem. 127 (2002), 463–471. MR 1931330
Reference: [19] J.  Jakubík: A theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete pseudo $MV$-algebras.Tatra Mt. Math. Publ. 22 (2002), 91–103. MR 1889037
Reference: [20] G.  Jenča: A Cantor-Bernstein type theorem for effect algebras.Algebra Univers. 48 (2002), 399–411. MR 1967089
Reference: [21] A. G.  Kurosh: Group Theory.Nauka, Moskva, 1953. (Russian)
Reference: [22] J.  Rachůnek: A non-commutative generalization of $MV$-algebras.Czechoslovak Math.  J. 52 (2002), 255–273. MR 1905434, 10.1023/A:1021766309509
Reference: [23] R.  Sikorski: A generalization of theorem of Banach and Cantor-Bernstein.Colloq. Math. 1 (1948), 140–144. MR 0027264, 10.4064/cm-1-2-140-144
Reference: [24] A.  Tarski: Cardinal Algebras.Oxford University Press, New York, 1949. Zbl 0041.34502, MR 0029954
.

Files

Files Size Format View
CzechMathJ_58-2008-1_1.pdf 285.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo