Previous |  Up |  Next

Article

Title: The axioms for implication in orthologic (English)
Author: Chajda, Ivan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 1
Year: 2008
Pages: 15-21
Summary lang: English
.
Category: math
.
Summary: We set up axioms characterizing logical connective implication in a logic derived by an ortholattice. It is a natural generalization of an orthoimplication algebra given by J. C. Abbott for a logic derived by an orthomodular lattice. (English)
Keyword: ortholattice
Keyword: orthoimplication
Keyword: orthologic
MSC: 03G12
MSC: 03G25
MSC: 06C15
idZBL: Zbl 1174.06310
idMR: MR2402523
.
Date available: 2009-09-24T11:53:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128243
.
Reference: [1] J. C. Abbott: Semi-boolean algebra.Matematički Vesnik 4 (1967), 177–198. Zbl 0153.02704, MR 0239957
Reference: [2] J. C. Abbott: Orthoimplication algebras.Studia Logica 35 (1976), 173–177. Zbl 0331.02036, MR 0441794, 10.1007/BF02120879
Reference: [3] I. Chajda, R. Halaš and H. Länger: Orthomodular implication algebras.Intern. J. of Theor. Phys. 40 (2001), 1875–1884. MR 1860644, 10.1023/A:1011933018776
Reference: [4] I. Chajda, R. Halaš and H. Länger: Simple axioms for orthomodular implication algebras.Intern. J. of Theor. Phys. 43 (2004), 911–914. MR 2106354, 10.1023/B:IJTP.0000048587.50827.93
Reference: [5] I. Chajda, G. Eigenthaler and H. Länger: Congruence Classes in Universal Algebra.Heldermann Verlag, 2003. MR 1985832
Reference: [6] B. Jónsson: Algebras whose congruence lattices are distributive.Math. Scand. 21 (1967), 110–121. MR 0237402, 10.7146/math.scand.a-10850
Reference: [7] G. Kalmbach: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0528.06012, MR 0716496
.

Files

Files Size Format View
CzechMathJ_58-2008-1_2.pdf 230.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo