Previous |  Up |  Next

Article

Title: On the Euler function of repdigits (English)
Author: Luca, Florian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 1
Year: 2008
Pages: 51-59
Summary lang: English
.
Category: math
.
Summary: For a positive integer $n$ we write $\phi (n)$ for the Euler function of $n$. In this note, we show that if $b>1$ is a fixed positive integer, then the equation \[ \phi \Big (x\frac{b^n-1}{b-1}\Big )=y\frac{b^m-1}{b-1},\qquad {\text{where}} \ x,~y\in \lbrace 1,\ldots ,b-1\rbrace , \] has only finitely many positive integer solutions $(x,y,m,n)$. (English)
Keyword: Euler function
Keyword: prime
Keyword: divisor
MSC: 11A25
idZBL: Zbl 1174.11004
idMR: MR2402525
.
Date available: 2009-09-24T11:53:29Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128245
.
Reference: [1] Yu. Bilu, G. Hanrot and P. M. Voutier: Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte).J. Reine Angew. Math. 539 (2001), 75–122. MR 1863855
Reference: [2] R. D. Carmichael: On the numerical factors of the arithmetic forms $\alpha ^n\pm \beta ^n$.Ann. Math. 15 (1913), 30–70. MR 1502458
Reference: [3] F. Luca: On the equation $\phi (|x^m+y^m|)=|x^n+y^n|$.Indian J. Pure Appl. Math. 30 (1999), 183–197. MR 1681596
Reference: [4] F. Luca: On the equation $\phi (x^m-y^m)=x^n+y^n$.Irish Math. Soc. Bull. 40 (1998), 46–55. MR 1635032
Reference: [5] F. Luca: Euler indicators of binary recurrent sequences.Collect. Math. 53 (2002), 133–156. MR 1913514
Reference: [6] F. Luca: Problem $10626$.Amer. Math. Monthly 104 (1997), 871. 10.2307/2975296
Reference: [7] K. K. Norton: On the number of restricted prime factors of an integer I.Illinois J. Math. 20 (1976), 681–705 Zbl 0329.10035. Zbl 0329.10035, MR 0419382, 10.1215/ijm/1256049659
Reference: [8] C. Pomerance: On the distribution of amicable numbers.J. Reine Angew. Math. 293/294 (1977), 217–222. Zbl 0349.10004, MR 0447087
.

Files

Files Size Format View
CzechMathJ_58-2008-1_4.pdf 264.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo