Previous |  Up |  Next

Article

Title: Curves with finite turn (English)
Author: Duda, Jakub
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 1
Year: 2008
Pages: 23-49
Summary lang: English
.
Category: math
.
Summary: In this paper we study the notions of finite turn of a curve and finite turn of tangents of a curve. We generalize the theory (previously developed by Alexandrov, Pogorelov, and Reshetnyak) of angular turn in Euclidean spaces to curves with values in arbitrary Banach spaces. In particular, we manage to prove the equality of angular turn and angular turn of tangents in Hilbert spaces. One of the implications was only proved in the finite dimensional context previously, and equivalence of finiteness of turn with finiteness of turn of tangents in arbitrary Banach spaces. We also develop an auxiliary theory of one-sidedly smooth curves with values in Banach spaces. We use analytic language and methods to provide analogues of angular theorems. In some cases our approach yields stronger results (for example Corollary 5.12 concerning the permanent properties of curves with finite turn) than those that were proved previously with geometric methods in Euclidean spaces. (English)
Keyword: curve with finite turn
Keyword: tangent of a curve
Keyword: curve with finite convexity
Keyword: delta-convex curve
Keyword: d.c. curve
MSC: 14H50
MSC: 46T20
MSC: 46T99
MSC: 53A04
MSC: 58B99
idZBL: Zbl 1167.46321
idMR: MR2402524
.
Date available: 2009-09-24T11:53:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128244
.
Reference: [1] A. D.  Alexandrov, Yu.  Reshetnyak: General Theory of Irregular Curves.Mathematics and its Applications (Soviet Series), Vol.  29, Kluwer Academic Publishers, Dordrecht, 1989. MR 1117220
Reference: [2] Y.  Benyamini, J. Lindenstrauss: Geometric Nonlinear Functional Analysis, Vol. 1. Colloquium Publications 48.American Mathematical Society, Providence, 2000. MR 1727673
Reference: [3] J.  Duda, L.  Veselý, L.  Zajíček: On D.C.  functions and mappings.Atti Sem. Mat. Fis. Univ. Modena 51 (2003), 111–138. MR 1993883
Reference: [4] M.  Gronychová: Konvexita a ohyb křivky.Master Thesis, Charles University, Prague, 1987. (Czech)
Reference: [5] N. Kalton: private communication..
Reference: [6] A. V.  Pogorelov: Extrinsic geometry of convex surfaces.Translations of Mathematical Monographs, Vol.  35, American Mathematical Society, Providence, 1973. Zbl 0311.53067, MR 0346714
Reference: [7] A. W.  Roberts, D. E. Varberg: Convex functions.Pure and Applied Mathematics, Vol. 57, Academic Press, New York-London, 1973. MR 0442824
Reference: [8] J. J.  Schäffer: Geometry of Spheres in Normed Spaces.Lecture Notes in Pure and Applied Mathematics Vol. 20, Marcel Dekker, New York-Basel, 1976. MR 0467256
Reference: [9] L.  Veselý: On the multiplicity points of monotone operators on separable Banach spaces.Comment. Math. Univ. Carolinae 27 (1986), 551–570. MR 0873628
Reference: [10] L.  Veselý, L.  Zajíček: Delta-convex mappings between Banach spaces and applications.Diss. Math. Vol.  289, 1989. MR 1016045
.

Files

Files Size Format View
CzechMathJ_58-2008-1_3.pdf 399.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo