Previous |  Up |  Next

Article

Title: Symmetry of iteration graphs (English)
Author: Carlip, Walter
Author: Mincheva, Martina
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 1
Year: 2008
Pages: 131-145
Summary lang: English
.
Category: math
.
Summary: We examine iteration graphs of the squaring function on the rings $\mathbb{Z}/n\mathbb{Z}$ when $n = 2^{k}p$, for $p$ a Fermat prime. We describe several invariants associated to these graphs and use them to prove that the graphs are not symmetric when $k=3$ and when $k\ge 5$ and are symmetric when $k = 4$. (English)
Keyword: digraph
Keyword: iteration digraph
Keyword: quadratic map
Keyword: tree
Keyword: cycle
MSC: 05C20
MSC: 05C62
MSC: 11T99
idZBL: Zbl 1174.05048
idMR: MR2402530
.
Date available: 2009-09-24T11:54:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128250
.
Reference: [1] Earle L. Blanton, Jr., Spencer P. Hurd and Judson S. McCranie: On a digraph defined by squaring modulo $n$.Fibonacci Quart. 30 (1992), 322–334. MR 1188735
Reference: [2] Guy Chassé: Combinatorial cycles of a polynomial map over a commutative field.Discrete Math. 61 (1986), 21–26. MR 0850926, 10.1016/0012-365X(86)90024-5
Reference: [3] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C. North and Gordon Woodhull: Graphviz-open source graph drawing tools.Graph drawing (Petra Mutzel, Michael Jünger, and Sebastian Leipert, eds.), Lecture Notes in Computer Science, vol. 2265, Springer-Verlag, Berlin, 2002, Selected papers from the 9th International Symposium (GD 2001) held in Vienna, September 23–26, 2001, pp. 483–484. (English) MR 1962414
Reference: [4] : The GAP Group, Gap-groups, algorithms, and programming, version 4.4, 2005, (http://www.gap-system.org)..
Reference: [5] Thomas D. Rogers: The graph of the square mapping on the prime fields.Discrete Math. 148 (1996), 317–324. MR 1368298, 10.1016/0012-365X(94)00250-M
Reference: [6] Lawrence Somer and Michal Křížek: On a connection of number theory with graph theory.Czechoslovak Math. J. 54 (2004), 465–485. MR 2059267, 10.1023/B:CMAJ.0000042385.93571.58
Reference: [7] L. Szalay: A discrete iteration in number theory.BDTF Tud. Közl. 8 (1992), 71–91. Zbl 0801.11011
Reference: [8] Troy Vasiga and Jeffrey Shallit: On the iteration of certain quadratic maps over $\text{GF}(p)$.Discrete Math. 277 (2004), 219–240. MR 2033734
.

Files

Files Size Format View
CzechMathJ_58-2008-1_9.pdf 486.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo