Previous |  Up |  Next

Article

Title: Derivations with power central values on Lie ideals in prime rings (English)
Author: Dhara, Basudeb
Author: Sharma, R. K.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 1
Year: 2008
Pages: 147-153
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a prime ring of char $R\ne 2$ with a nonzero derivation $d$ and let $U$ be its noncentral Lie ideal. If for some fixed integers $n_1\ge 0, n_2\ge 0, n_3\ge 0$, $( u^{n_1}[d(u),u]u^{n_2})^{n_3}\in Z(R)$ for all $u \in U$, then $R$ satisfies $S_4$, the standard identity in four variables. (English)
Keyword: prime ring
Keyword: derivation
Keyword: extended centroid
Keyword: martindale quotient ring
MSC: 16N60
MSC: 16R50
MSC: 16W10
MSC: 16W25
idZBL: Zbl 1165.16303
idMR: MR2402531
.
Date available: 2009-09-24T11:54:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128251
.
Reference: [1] J. Bergen, I. N. Herstein and J. W. Keer: Lie ideals and derivations of prime rings.J. Algebra 71 (1981), 259–267. MR 0627439, 10.1016/0021-8693(81)90120-4
Reference: [2] L. Carini and V. D. Filippis: Commutators with power central values on a Lie ideal.Pacific J. Math. 193 (2000), 269–278. MR 1755818, 10.2140/pjm.2000.193.269
Reference: [3] C. L. Chuang: GPI’s having coefficients in Utumi quotient rings.Proc. Amer. Math. Soc. 103 (1988), 723–728. MR 0947646, 10.1090/S0002-9939-1988-0947646-4
Reference: [4] T. S. Erickson, W. S. Martindale III and J. M. Osborn: Prime nonassociative algebras.Pacific J. Math. 60 (1975), 49–63. MR 0382379, 10.2140/pjm.1975.60.49
Reference: [5] N. Jacobson: PI-algebras, an Introduction.Lecture notes in Math., 441, Springer Verlag, New York, 1975. Zbl 0326.16013, MR 0369421
Reference: [6] N. Jacobson: Structure of Rings.Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964. MR 0222106
Reference: [7] V. K. Kharchenko: Differential identity of prime rings.Algebra and Logic. 17 (1978), 155–168. MR 0541758, 10.1007/BF01670115
Reference: [8] C. Lanski: An engel condition with derivation.Proc. Amer. Math. Soc. 118 (1993), 731–734. Zbl 0821.16037, MR 1132851, 10.1090/S0002-9939-1993-1132851-9
Reference: [9] C. Lanski: Differential identities, Lie ideals, and Posner’s theorems.Pacific J. Math. 134 (1988), 275–297. Zbl 0614.16028, MR 0961236, 10.2140/pjm.1988.134.275
Reference: [10] W. S. Martindale III: Prime rings satisfying a generalized polynomial identity.J. Algebra 12 (1969), 576–584. MR 0238897, 10.1016/0021-8693(69)90029-5
Reference: [11] E. C. Posner: Derivation in prime rings.Proc. Amer. Math. Soc. 8 (1957), 1093–1100. MR 0095863, 10.1090/S0002-9939-1957-0095863-0
.

Files

Files Size Format View
CzechMathJ_58-2008-1_10.pdf 246.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo