Previous |  Up |  Next

Article

Title: The exactness of the projective limit functor on the category of quotients of Frechet spaces (English)
Author: Aqzzouz, Belmesnaoui
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 1
Year: 2008
Pages: 173-181
Summary lang: English
.
Category: math
.
Summary: We give conditions under which the functor projective limit is exact on the category of quotients of Fréchet spaces of L. Waelbroeck [18]. (English)
Keyword: quotient d’espaces de Fréchet
Keyword: limite projective
MSC: 46A04
MSC: 46A17
MSC: 46M05
MSC: 46M15
MSC: 46M40
idZBL: Zbl 1174.46036
idMR: MR2402533
.
Date available: 2009-09-24T11:54:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128253
.
Reference: [1] B. Aqzzouz and R. Nouira: La catégorie abélienne des quotients de type $\mathcal{LF}$.Czech. Math. J. 57 (2007), 183–190. MR 2309959
Reference: [2] B. Aqzzouz: Une application du Lemme de Mittag-Leffler dans la catégorie des quotients d’espaces de Fréchet. (to appear).
Reference: [3] P. Domanski and D. Vogt: A splitting theorem for the space of smooth functions.J. Funct. Anal. 153 (1998), 203–248. MR 1614582, 10.1006/jfan.1997.3177
Reference: [4] P. Domanski and D. Vogt: Distributional complexes split for positive dimensions.J. Reine Angew. Math. 522 (2000), 63–79. MR 1758575
Reference: [5] L. Ehrenpreis: Fourier analysis in several complex variables.Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience Publishers A Division of John Wiley & Sons, New York-London-Sydney, 1970. Zbl 0195.10401, MR 0285849
Reference: [6] A. Grothendieck: Produits tensoriels topologiques et espaces nucléaires.Mem. Amer. Math. Soc. (1966). MR 1609222
Reference: [7] L. Hörmander: The analysis of partial differential operators II.Grundlehren der Mathematischen Wissenschaften Springer-Verlag, Berlin, 1983.
Reference: [8] V. P. Palamodov: The projective limit functor in the category of topological linear spaces.Mat. Sb. (N.S.) 75 117 (1968), 567–603. (Russian) MR 0223851
Reference: [9] V. P. Palamodov: Linear differential operators with constant coefficients.Translated from the Russian by A. A. Brown. Die Grundlehren der mathematischen Wissenschaften, Band 168 Springer-Verlag, New York-Berlin, 1970. Zbl 0191.43401, MR 0264197
Reference: [10] V. P. Palamodov: Homological methods in the theory of locally convex spaces.Uspehi Mat. Nauk 26 1 (1971), 3–65. (Russian) Zbl 0247.46070, MR 0293365
Reference: [11] V. P. Palamodov: On a Stein manifold the Dolbeault complex splits in positive dimensions.Mat. Sb. (N.S.) 88 (1972), 287–315. (Russian) MR 0313540
Reference: [12] V. P. Palamodov: A criterion for splitness of differential complexes with constant coefficients.Geometric and Algebraic aspects in Several Complex Variables, AMS, 1991, pp. 265-291. Zbl 1112.58304, MR 1222219
Reference: [13] F. H. Vasilescu: Spectral theory in quotient Fréchet spaces I.Revue Roumaine de Math. Pures et Appl. 32 (1987), 561–579. Zbl 0665.46058, MR 0900363
Reference: [14] F. H. Vasilescu: Spectral theory in quotient Fréchet spaces II.J. Operator theory 21 (1989), 145–202. Zbl 0782.46005, MR 1002127
Reference: [15] D. Vogt: On the functors $\mathop {\text{Ext}}_{1}(E,F)$ for Fréchet spaces.Studia Math. 85 (1987), 163–197. MR 0887320, 10.4064/sm-85-2-163-197
Reference: [16] L. Waelbroeck: Quotient Banach spaces.Banach Center Publ. Warsaw (1982), 553–562 and 563–571. Zbl 0492.46014, MR 0738315
Reference: [17] L. Waelbroeck: The category of quotient bornological spaces.J.A. Barroso (ed.), Aspects of Mathematics and its Applications, Elsevier Sciences Publishers B.V. (1986), 873–894. Zbl 0633.46071, MR 0849594
Reference: [18] L. Waelbroeck: Quotient Fréchet spaces.Revue Roumaine de Math. Pures et Appl. 34, n. 2 (1989), 171–179. Zbl 0696.46052, MR 1005909
Reference: [19] L. Waelbroeck: Holomorphic Functions taking their values in a quotient bornological space.Linear operators in function spaces, 12th Int. Conf. Oper. Theory, Timisoara (Rom.) 1988, Oper. Theory, Adv. Appl. 43 (1990), 323–335. Zbl 0711.46010, MR 1090139
Reference: [20] J. Wengenroth: Derived Functors in Functional Analysis.Lecture Notes in Math. 1810. Springer-Verlag, Berlin, 2003. Zbl 1031.46001, MR 1977923
.

Files

Files Size Format View
CzechMathJ_58-2008-1_12.pdf 267.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo