Previous |  Up |  Next

Article

Title: Direct summands and retract mappings of generalized $MV$-algebras (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 1
Year: 2008
Pages: 183-202
Summary lang: English
.
Category: math
.
Summary: In the present paper we deal with generalized $MV$-algebras ($GMV$-algebras, in short) in the sense of Galatos and Tsinakis. According to a result of the mentioned authors, $GMV$-algebras can be obtained by a truncation construction from lattice ordered groups. We investigate direct summands and retract mappings of $GMV$-algebras. The relations between $GMV$-algebras and lattice ordered groups are essential for this investigation. (English)
Keyword: residuated lattice
Keyword: lattice ordered group
Keyword: generalized $MV$-algebra
Keyword: direct summand
MSC: 06D35
MSC: 06F15
idZBL: Zbl 1174.06319
idMR: MR2402534
.
Date available: 2009-09-24T11:54:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128254
.
Reference: [1] C. C. Chang: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [2] R. Cignoli, I. M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning.Kluwer Academic Publishers, Dordrecht, 2000. MR 1786097
Reference: [3] A. Dvurečenskij: Pseudo MV-algebras are intervals in $\ell $-groups.J. Austral. Math. Soc. 72 (2004), 427–445. MR 1902211
Reference: [4] L. Fuchs:: Infinite Abelian Groups, Vol. 1.Academic Press, New York and London, 1970. MR 0255673
Reference: [5] N. Galatos and C. Tsinakis: Generalized MV-algebras.J. Algebra 283 (2005), 254–291. MR 2102083, 10.1016/j.jalgebra.2004.07.002
Reference: [6] G. Georgescu and A. Iorgulescu: Pseudo MV-algebras: a noncommutative extension of MV-algebras.In: Information Technology, Bucharest 1999, INFOREC, Bucharest, 1999, pp. 961–968. MR 1730100
Reference: [7] G. Georgescu and A. Iorgulescu: Pseudo MV-algebras.Multi-Valued Logic 6 (2001), 95–135. MR 1817439
Reference: [8] A. M. W. Glass: Partially Ordered Groups.World Scientific, Singapore-New Jersey-London-Hong Kong, 1999. Zbl 0933.06010, MR 1791008
Reference: [9] J. Jakubík: Direct product decompositions of MV-algebras.Czech. Math. J. 44 (1994), 725–739.
Reference: [10] J. Jakubík: Direct product decompositions of pseudo MV-algebras.Archivum Math. 37 (2001), 131–142. MR 1838410
Reference: [11] J. Jakubík: Weak $(m, n)$-distributivity of lattice ordered groups and of generalized MV-algebras.Soft Computing 10 (2006), 119–124. MR 2356285
Reference: [12] J. Jakubík: On interval subalgebras of generalized MV-algebras.Math. Slovaca 56 (2006), 387–395. MR 2267760
Reference: [13] J. Jakubík: Retracts of abelian lattice ordered groups.Czech. Math. J. 39 (1989), 477–489. MR 1006313
Reference: [14] J. Jakubík: Retract varieties of lattice ordered groups.Czech. Math. J. 40 (1990), 104–112. MR 1032363
Reference: [15] J. Jakubík: Complete retract mappings of a complete lattice ordered group.Czech. Math. J. 43 (1993), 309–318. MR 1211752
Reference: [16] J. Jakubík: On absolute retracts and absolute convex retracts in some classes of $\ell $-groups.Discussiones Math., Gener. Alg. Appl. 23 (2003), 19–30. MR 2070043
Reference: [17] J. Jakubík: Retract mappings of projectable MV-algebras.Soft Computing 4 (2000), 27–32.
Reference: [18] D. Mundici: Interpretation of AFC$^*$-algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15–63. MR 0819173, 10.1016/0022-1236(86)90015-7
Reference: [19] J. Rachůnek: A non-commutative generalization of MV-algebras.Czech. Math. J. 52 (2002), 255–273. MR 1905434, 10.1023/A:1021766309509
Reference: [20] J. Rachůnek and D. Šalounová: Direct product factors in $GMV$-algebras.Math. Slovaca 55 (2005), 399–407. MR 2181780
.

Files

Files Size Format View
CzechMathJ_58-2008-1_13.pdf 315.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo