Previous |  Up |  Next

Article

Keywords:
bicyclic monoid; subsemigroup; generators; defining relations; automatic structures
Summary:
In this paper we study some properties of the subsemigroups of the bicyclic monoid B, by using a recent description of its subsemigroups. We start by giving necessary and sufficient conditions for a subsemigroup to be finitely generated. Then we show that all finitely generated subsemigroups are automatic and finitely presented. Finally we prove that a subsemigroup of B is residually finite if and only if it does not contain a copy of B.
References:
[1] C. L. Adair: A generalization of the bicyclic semigroup. Semigroup Forum 21 (1980), 13–25. DOI 10.1007/BF02572535 | MR 0588486 | Zbl 0449.20062
[2] K. Byleen, J. Meakin and F. Pastijn: The fundamental four-spiral semigroup. J. Algebra 54 (1978), 6–26. DOI 10.1016/0021-8693(78)90018-2 | MR 0511454
[3] C. M. Campbell, E. F. Robertson, N. Ruškuc and R. M. Thomas: Automatic semigroups. Theoret. Comput. Sci. 250 (2001), 365–391. DOI 10.1016/S0304-3975(99)00151-6 | MR 1795250
[4] L. Descalço and N. Ruškuc: Subsemigroups of the bicyclic monoid. Internat. J. Algebra Comput. 15 (2005), 37–57. DOI 10.1142/S0218196705002098 | MR 2130175
[5] P. A. Grillet: On the fundamental double four-spiral semigroup. Bull. Belg. Math. Soc. Simon Stevin 3 (1996), 201–208. MR 1389613 | Zbl 0847.20059
[6] M. Hoffmann, N. Ruškuc and R. M. Thomas: Automatic semigroups with subsemigroups of finite Rees index. Internat. J. Algebra Comput. 12 (2002), 463–476. DOI 10.1142/S0218196702000833 | MR 1910689
[7] M. Hoffmann and R. M. Thomas: Notions of automaticity in semigroups. Semigroup Forum 66 (2003), 337–367. DOI 10.1007/s002330010161 | MR 1966759
[8] J. W. Hogan: The $\alpha $-bicyclic semigroup as a topological semigroup. Semigroup Forum 28 (1984), 265–271. DOI 10.1007/BF02572488 | MR 0729667 | Zbl 0531.22003
[9] J. M. Howie: Fundamentals of Semigroup Theory. Oxford University Press, 1995. MR 1455373 | Zbl 0835.20077
[10] G. Lallement: Semigroups and Combinatorial Applications. John Wiley & Sons, 1979. MR 0530552 | Zbl 0421.20025
[11] G. Lallement: On monoids presented by a single relation. J. Algebra 32 (1974), 370–388. DOI 10.1016/0021-8693(74)90146-X | MR 0354908 | Zbl 0307.20034
[12] M. V. Lawson: Inverse Semigroups. World Scientific, 1998. MR 1694900 | Zbl 1079.20505
[13] S. O. Makanjuola and A. Umar: On a certain subsemigroup of the bicyclic semigroup. Comm. Algebra 25 (1997), 509–519. DOI 10.1080/00927879708825870 | MR 1428794
[14] N. Ruškuc: On large subsemigroups and finiteness conditions of semigroups. Proc. London Math. Soc. 76 (1998), 383–405. MR 1490242
[15] L. N. Shevrin: The bicyclic semigroup is determined by its subsemigroup lattice. Bull. Belg. Math. Soc. Simon Stevin 67 (1993), 49–53. MR 1286242 | Zbl 0808.20051
[16] L. N. Shevrin and A. J. Ovsyannikov: Semigroups and Their Subsemigroup Lattices. Kluwer Academic Publishers, 1996. MR 1420413
Partner of
EuDML logo