Previous |  Up |  Next

Article

Title: Properties of the subsemigroups of the bicyclic monoid (English)
Author: Descalço, L.
Author: Ruškuc, N.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 2
Year: 2008
Pages: 311-330
Summary lang: English
.
Category: math
.
Summary: In this paper we study some properties of the subsemigroups of the bicyclic monoid B, by using a recent description of its subsemigroups. We start by giving necessary and sufficient conditions for a subsemigroup to be finitely generated. Then we show that all finitely generated subsemigroups are automatic and finitely presented. Finally we prove that a subsemigroup of B is residually finite if and only if it does not contain a copy of B. (English)
Keyword: bicyclic monoid
Keyword: subsemigroup
Keyword: generators
Keyword: defining relations
Keyword: automatic structures
MSC: 20M05
MSC: 20M10
idZBL: Zbl 1166.20052
idMR: MR2411092
.
Date available: 2009-09-24T11:55:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128260
.
Reference: [1] C. L. Adair: A generalization of the bicyclic semigroup.Semigroup Forum 21 (1980), 13–25. Zbl 0449.20062, MR 0588486, 10.1007/BF02572535
Reference: [2] K. Byleen, J. Meakin and F. Pastijn: The fundamental four-spiral semigroup.J. Algebra 54 (1978), 6–26. MR 0511454, 10.1016/0021-8693(78)90018-2
Reference: [3] C. M. Campbell, E. F. Robertson, N. Ruškuc and R. M. Thomas: Automatic semigroups.Theoret. Comput. Sci. 250 (2001), 365–391. MR 1795250, 10.1016/S0304-3975(99)00151-6
Reference: [4] L. Descalço and N. Ruškuc: Subsemigroups of the bicyclic monoid.Internat. J. Algebra Comput. 15 (2005), 37–57. MR 2130175, 10.1142/S0218196705002098
Reference: [5] P. A. Grillet: On the fundamental double four-spiral semigroup.Bull. Belg. Math. Soc. Simon Stevin 3 (1996), 201–208. Zbl 0847.20059, MR 1389613, 10.36045/bbms/1105540792
Reference: [6] M. Hoffmann, N. Ruškuc and R. M. Thomas: Automatic semigroups with subsemigroups of finite Rees index.Internat. J. Algebra Comput. 12 (2002), 463–476. MR 1910689, 10.1142/S0218196702000833
Reference: [7] M. Hoffmann and R. M. Thomas: Notions of automaticity in semigroups.Semigroup Forum 66 (2003), 337–367. MR 1966759, 10.1007/s002330010161
Reference: [8] J. W. Hogan: The $\alpha $-bicyclic semigroup as a topological semigroup.Semigroup Forum 28 (1984), 265–271. Zbl 0531.22003, MR 0729667, 10.1007/BF02572488
Reference: [9] J. M. Howie: Fundamentals of Semigroup Theory.Oxford University Press, 1995. Zbl 0835.20077, MR 1455373
Reference: [10] G. Lallement: Semigroups and Combinatorial Applications.John Wiley & Sons, 1979. Zbl 0421.20025, MR 0530552
Reference: [11] G. Lallement: On monoids presented by a single relation.J. Algebra 32 (1974), 370–388. Zbl 0307.20034, MR 0354908, 10.1016/0021-8693(74)90146-X
Reference: [12] M. V. Lawson: Inverse Semigroups.World Scientific, 1998. Zbl 1079.20505, MR 1694900
Reference: [13] S. O. Makanjuola and A. Umar: On a certain subsemigroup of the bicyclic semigroup.Comm. Algebra 25 (1997), 509–519. MR 1428794, 10.1080/00927879708825870
Reference: [14] N. Ruškuc: On large subsemigroups and finiteness conditions of semigroups.Proc. London Math. Soc. 76 (1998), 383–405. MR 1490242
Reference: [15] L. N. Shevrin: The bicyclic semigroup is determined by its subsemigroup lattice.Bull. Belg. Math. Soc. Simon Stevin 67 (1993), 49–53. Zbl 0808.20051, MR 1286242
Reference: [16] L. N. Shevrin and A. J. Ovsyannikov: Semigroups and Their Subsemigroup Lattices.Kluwer Academic Publishers, 1996. MR 1420413
.

Files

Files Size Format View
CzechMathJ_58-2008-2_2.pdf 344.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo