Title:
|
Properties of the subsemigroups of the bicyclic monoid (English) |
Author:
|
Descalço, L. |
Author:
|
Ruškuc, N. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
58 |
Issue:
|
2 |
Year:
|
2008 |
Pages:
|
311-330 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we study some properties of the subsemigroups of the bicyclic monoid B, by using a recent description of its subsemigroups. We start by giving necessary and sufficient conditions for a subsemigroup to be finitely generated. Then we show that all finitely generated subsemigroups are automatic and finitely presented. Finally we prove that a subsemigroup of B is residually finite if and only if it does not contain a copy of B. (English) |
Keyword:
|
bicyclic monoid |
Keyword:
|
subsemigroup |
Keyword:
|
generators |
Keyword:
|
defining relations |
Keyword:
|
automatic structures |
MSC:
|
20M05 |
MSC:
|
20M10 |
idZBL:
|
Zbl 1166.20052 |
idMR:
|
MR2411092 |
. |
Date available:
|
2009-09-24T11:55:01Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128260 |
. |
Reference:
|
[1] C. L. Adair: A generalization of the bicyclic semigroup.Semigroup Forum 21 (1980), 13–25. Zbl 0449.20062, MR 0588486, 10.1007/BF02572535 |
Reference:
|
[2] K. Byleen, J. Meakin and F. Pastijn: The fundamental four-spiral semigroup.J. Algebra 54 (1978), 6–26. MR 0511454, 10.1016/0021-8693(78)90018-2 |
Reference:
|
[3] C. M. Campbell, E. F. Robertson, N. Ruškuc and R. M. Thomas: Automatic semigroups.Theoret. Comput. Sci. 250 (2001), 365–391. MR 1795250, 10.1016/S0304-3975(99)00151-6 |
Reference:
|
[4] L. Descalço and N. Ruškuc: Subsemigroups of the bicyclic monoid.Internat. J. Algebra Comput. 15 (2005), 37–57. MR 2130175, 10.1142/S0218196705002098 |
Reference:
|
[5] P. A. Grillet: On the fundamental double four-spiral semigroup.Bull. Belg. Math. Soc. Simon Stevin 3 (1996), 201–208. Zbl 0847.20059, MR 1389613, 10.36045/bbms/1105540792 |
Reference:
|
[6] M. Hoffmann, N. Ruškuc and R. M. Thomas: Automatic semigroups with subsemigroups of finite Rees index.Internat. J. Algebra Comput. 12 (2002), 463–476. MR 1910689, 10.1142/S0218196702000833 |
Reference:
|
[7] M. Hoffmann and R. M. Thomas: Notions of automaticity in semigroups.Semigroup Forum 66 (2003), 337–367. MR 1966759, 10.1007/s002330010161 |
Reference:
|
[8] J. W. Hogan: The $\alpha $-bicyclic semigroup as a topological semigroup.Semigroup Forum 28 (1984), 265–271. Zbl 0531.22003, MR 0729667, 10.1007/BF02572488 |
Reference:
|
[9] J. M. Howie: Fundamentals of Semigroup Theory.Oxford University Press, 1995. Zbl 0835.20077, MR 1455373 |
Reference:
|
[10] G. Lallement: Semigroups and Combinatorial Applications.John Wiley & Sons, 1979. Zbl 0421.20025, MR 0530552 |
Reference:
|
[11] G. Lallement: On monoids presented by a single relation.J. Algebra 32 (1974), 370–388. Zbl 0307.20034, MR 0354908, 10.1016/0021-8693(74)90146-X |
Reference:
|
[12] M. V. Lawson: Inverse Semigroups.World Scientific, 1998. Zbl 1079.20505, MR 1694900 |
Reference:
|
[13] S. O. Makanjuola and A. Umar: On a certain subsemigroup of the bicyclic semigroup.Comm. Algebra 25 (1997), 509–519. MR 1428794, 10.1080/00927879708825870 |
Reference:
|
[14] N. Ruškuc: On large subsemigroups and finiteness conditions of semigroups.Proc. London Math. Soc. 76 (1998), 383–405. MR 1490242 |
Reference:
|
[15] L. N. Shevrin: The bicyclic semigroup is determined by its subsemigroup lattice.Bull. Belg. Math. Soc. Simon Stevin 67 (1993), 49–53. Zbl 0808.20051, MR 1286242 |
Reference:
|
[16] L. N. Shevrin and A. J. Ovsyannikov: Semigroups and Their Subsemigroup Lattices.Kluwer Academic Publishers, 1996. MR 1420413 |
. |