Title:
|
Interior and closure operators on bounded residuated lattice ordered monoids (English) |
Author:
|
Švrček, Filip |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
58 |
Issue:
|
2 |
Year:
|
2008 |
Pages:
|
345-357 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
$GMV$-algebras endowed with additive closure operators or with its duals-multiplicative interior operators (closure or interior $GMV$-algebras) were introduced as a non-commutative generalization of topological Boolean algebras. In the paper, the multiplicative interior and additive closure operators on $DRl$-monoids are introduced as natural generalizations of the multiplicative interior and additive closure operators on $GMV$-algebras. (English) |
Keyword:
|
$GMV$-algebra |
Keyword:
|
$DRl$-monoid |
Keyword:
|
filter |
MSC:
|
03G25 |
MSC:
|
06D35 |
MSC:
|
06F05 |
idZBL:
|
Zbl 1174.06323 |
idMR:
|
MR2411094 |
. |
Date available:
|
2009-09-24T11:55:14Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128262 |
. |
Reference:
|
[1] P. Bahls, J. Cole, N. Galatos, P. Jipsen and C. Tsinakis: Cancellative residuated lattices.Alg. Univ. 50 (2003), 83–106. MR 2026830, 10.1007/s00012-003-1822-4 |
Reference:
|
[2] K. Blount and C. Tsinakis: The structure of residuated lattices.Intern. J. Alg. Comp. 13 (2003), 437–461. MR 2022118, 10.1142/S0218196703001511 |
Reference:
|
[3] R. O. L. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. MR 1786097 |
Reference:
|
[4] A. Dvurečenskij: States on pseudo $MV$-algebras.Studia Logica 68 (2001), 301–327. MR 1865858, 10.1023/A:1012490620450 |
Reference:
|
[5] A. Dvurečenskij: Every linear pseudo $BL$-algebra admits a state.Soft Computing (2006). |
Reference:
|
[6] A. Dvurečenskij and M. Hyčko: On the existence of states for linear pseudo $BL$-algebras.Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 53 (2005), 93–110. MR 2199034 |
Reference:
|
[7] A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structures.Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. MR 1861369 |
Reference:
|
[8] A. Dvurečenskij and J. Rachůnek: On Riečan and Bosbach states for bounded $Rl$-monoids.(to appear). |
Reference:
|
[9] A. Dvurečenskij and J. Rachůnek: Probabilistic averaging in bounded $Rl$-monoids.Semigroup Forum 72 (2006), 190–206. MR 2216089 |
Reference:
|
[10] G. Georgescu and A. Iorgulescu: Pseudo-$MV$-algebras.Multiple Valued Logic 6 (2001), 95–135. MR 1817439 |
Reference:
|
[11] A. di Nola, G. Georgescu and A. Iorgulescu: Pseudo-$BL$-algebras I.Multiple Valued Logic 8 (2002), 673–714. MR 1948853 |
Reference:
|
[12] A. di Nola, G. Georgescu and A. Iorgulescu: Pseudo-$BL$-algebras II.Multiple Valued Logic 8 (2002), 715–750. MR 1948854 |
Reference:
|
[13] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer, Amsterdam, 1998. MR 1900263 |
Reference:
|
[14] P. Jipsen and C. Tsinakis: A survey of residuated lattices.Ordered algebraic structures (ed. J. Martinez), Kluwer Acad. Publ. Dordrecht, 2002, pp. 19–56. MR 2083033 |
Reference:
|
[15] T. Kovář: A General Theory of Dually Residuated Lattice Ordered Monoids.Ph.D. Thesis Palacký University, Olomouc, 1996. |
Reference:
|
[16] J. Kühr: Dually Residuated Lattice Ordered Monoids.Ph.D. Thesis, Palacký Univ., Olomouc, 2003. MR 2070377 |
Reference:
|
[17] J. Kühr: Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids.Acta Univ. Palacki. Olomouc, Mathematica 43 (2004), 105–112. MR 2124607 |
Reference:
|
[18] J. Kühr: Ideals of noncommutative ${\mathcal{D}}Rl$-monoids.Czech. Math. J. 55 (2002), 97–111. MR 2121658 |
Reference:
|
[19] J. Rachůnek: $DRl$-semigroups and $MV$-algebras.Czech. Math. J. 48 (1998), 365–372. 10.1023/A:1022801907138 |
Reference:
|
[20] J. Rachůnek: $MV$-algebras are categorically equivalent to a class of $DRl_{1(i)}$-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115 |
Reference:
|
[21] J. Rachůnek: A duality between algebras of basic logic and bounded representable $DRl$-monoids.Math. Bohem. 126 (2001), 561–569. MR 1970259 |
Reference:
|
[22] J. Rachůnek: A non-commutative generalization of $MV$-algebras.Czech. Math. J. 52 (2002), 255–273. MR 1905434, 10.1023/A:1021766309509 |
Reference:
|
[23] J. Rachůnek and V. Slezák: Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures.Math. Slovaca 56 (2006), 223–233. MR 2229343 |
Reference:
|
[24] J. Rachůnek and D. Šalounová: Local bounded commutative residuated $l$-monoids.(to appear). MR 2309973 |
Reference:
|
[25] J. Rachůnek and F. Švrček: $MV$-algebras with additive closure operators.Acta Univ. Palacki., Mathematica 39 (2000), 183–189. |
Reference:
|
[26] F. Švrček: Operators on $GMV$-algebras.Math. Bohem. 129 (2004), 337–347. MR 2102608 |
Reference:
|
[27] H. Rasiowa and R. Sikorski: The Mathematics of Metamathematics.Panstw. Wyd. Nauk., Warszawa, 1963. MR 0163850 |
Reference:
|
[28] K. L. N. Swamy: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284 |
Reference:
|
[29] E. Turunen: Mathematics Behind Fuzzy Logic.Physica-Verlag, Heidelberg-New York, 1999. Zbl 0940.03029, MR 1716958 |
. |