Previous |  Up |  Next

Article

Title: Shape-preserving properties and asymptotic behaviour of the semigroup generated by the Black-Scholes operator (English)
Author: Attalienti, Antonio
Author: Rasa, Ioan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 2
Year: 2008
Pages: 457-467
Summary lang: English
.
Category: math
.
Summary: The paper is devoted to a careful analysis of the shape-preserving properties of the strongly continuous semigroup generated by a particular second-order differential operator, with particular emphasis on the preservation of higher order convexity and Lipschitz classes. In addition, the asymptotic behaviour of the semigroup is investigated as well. The operator considered is of interest, since it is a unidimensional Black-Scholes operator so that our results provide qualitative information on the solutions of classical problems in option pricing theory in Mathematical Finance. (English)
Keyword: strongly continuous semigroups
Keyword: differential operators
Keyword: positive linear operators
Keyword: Black-Scholes operator
MSC: 41A35
MSC: 41A36
MSC: 47D06
MSC: 47E05
MSC: 47N10
MSC: 91B28
MSC: 91Gxx
idZBL: Zbl 1174.47037
idMR: MR2411101
.
Date available: 2009-09-24T11:56:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128269
.
Reference: [1] F.  Altomare, R.  Amiar: Approximation by positive operators of the $C_0$-semigroups associated with one-dimensional diffusion equations. Part  II.Numer. Funct. Anal. Optimiz. 26 (2005), 17–33. MR 2128742, 10.1081/NFA-200051623
Reference: [2] F.  Altomare, R.  Amiar: Corrigendum to: Approximation by positive operators of the $C_0$-semigroups associated with one-dimensional diffusion equations, Part  II.Numer. Funct. Anal. Optimiz. 26 (2005), 17–33. MR 2128742, 10.1081/NFA-200051623
Reference: [3] F.  Altomare, A.  Attalienti: Degenerate evolution equations in weighted continuous function spaces, Markov processes and the Black-Scholes equation. Part  II.Result. Math. 42 (2002), 212–228. MR 1946741, 10.1007/BF03322851
Reference: [4] F.  Altomare, I.  Rasa: On a class of exponential-type operators and their limit semigroups.J.  Approximation Theory 135 (2005), 258–275. MR 2158534, 10.1016/j.jat.2005.05.006
Reference: [5] A.  Attalienti, I.  Rasa: Total positivity: An application to positive linear operators and to their limiting semigroups.Rev. Anal. Numer. Theor. Approx. 36 (2007), 51–66. MR 2499632
Reference: [6] I.  Carbone: Shape preserving properties of some positive linear operators on unbounded intervals.J.  Approximation Theory 93 (1998), 140–156. Zbl 0921.47035, MR 1612802, 10.1006/jath.1997.3134
Reference: [7] N.  El  Karoui, M.  Jeanblanc-Picqué, and S. E.  Shreve: Robustness of the Black and Scholes formula.Math. Finance 8 (1998), 93–126. MR 1609962, 10.1111/1467-9965.00047
Reference: [8] I.  Faragó, T.  Pfeil: Preserving concavity in initial-boundary value problems of parabolic type and in its numerical solution.Period. Math. Hung. 30 (1995), 135–139. MR 1326774, 10.1007/BF01876627
Reference: [9] R.  Korn, E.  Korn: Option Pricing and Portfolio Optimization. Modern Methods of Financial Mathematics.Amer. Math. Soc., Providence, 2001. MR 1802499
Reference: [10] M.  Kovács: On positivity, shape, and norm-bound preservation of time-stepping methods for semigroups.J.  Math. Anal. Appl. 304 (2005), 115–136. MR 2124652, 10.1016/j.jmaa.2004.09.069
Reference: [11] B.Øksendal: Stochastic Differential Equations. Fourth Edition.Springer-Verlag, New York, 1995.
.

Files

Files Size Format View
CzechMathJ_58-2008-2_11.pdf 278.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo