Previous |  Up |  Next

Article

Title: A generalization of the Gauss-Lucas theorem (English)
Author: Díaz-Barrero, J. L.
Author: Egozcue, J. J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 2
Year: 2008
Pages: 481-486
Summary lang: English
.
Category: math
.
Summary: Given a set of points in the complex plane, an incomplete polynomial is defined as the one which has these points as zeros except one of them. The classical result known as Gauss-Lucas theorem on the location of zeros of polynomials and their derivatives is extended to convex linear combinations of incomplete polynomials. An integral representation of convex linear combinations of incomplete polynomials is also given. (English)
Keyword: polynomials
Keyword: location of zeros
Keyword: convex hull of the zeros
Keyword: Gauss-Lucas theorem
MSC: 12D10
MSC: 26C05
MSC: 30C15
idZBL: Zbl 1174.12001
idMR: MR2411103
.
Date available: 2009-09-24T11:56:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128271
.
Reference: [1] C. F. Gauss: Collected Works.Leipzig, Teubner, 1900–1903, vol. 3, p. 112, and vol. 8, p. 32, and vol. 9, p. 187. Zbl 0924.01032
Reference: [2] F. Lucas: Propriétés géométriques des fractions rationelles.C. R. Acad. Sci. Paris 77 (1874), 431–433.
Reference: [3] J. L. Díaz-Barrero: Characterization of Polynomials by Reflection Coefficients.PhD. Disertation (Advisor J. J. Egozcue), Universitat Politècnica de Catalunya, Barcelona, 2000.
Reference: [4] M. Marden: The Geometry of the Zeros of a Polynomial in a Complex Variable.American Mathematical Society, Rhode Island, 1966. MR 0031114
.

Files

Files Size Format View
CzechMathJ_58-2008-2_13.pdf 235.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo