Previous |  Up |  Next

Article

Title: Viscosity subsolutions and supersolutions for non-uniformly and degenerate elliptic equations (English)
Author: Tersenov, Aris S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 45
Issue: 1
Year: 2009
Pages: 19-35
Summary lang: English
.
Category: math
.
Summary: In the present paper we study the Dirichlet boundary value problem for quasilinear elliptic equations including non-uniformly and degenerate ones. In particular, we consider mean curvature equation and pseudo p-Laplace equation as well. It is well-known that the proof of the existence of continuous viscosity solutions is based on Ishii’s implementation of Perron’s method. In order to use this method one has to produce suitable subsolution and supersolution. Here we introduce new methods to construct subsolutions and supersolutions for the above mentioned problems. Using these subsolutions and supersolutions one may prove the existence of unique continuous viscosity solution for a wide class of degenerate and non-uniformly elliptic equations. (English)
Keyword: viscosity subsolution
Keyword: viscosity supersolution
Keyword: mean curvature equation
Keyword: pseudo $p$-Laplace equation
MSC: 35D05
MSC: 35D40
MSC: 35J60
MSC: 49L25
idZBL: Zbl 1212.35134
idMR: MR2591658
.
Date available: 2009-06-25T13:47:01Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/128286
.
Reference: [1] Barles, G.: A weak Bernstein method for fully nonlinear elliptic equations.Differential Integral Equations 4 (2) (1991), 241–262. MR 1081182
Reference: [2] Chen, Y. G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations.J. Differential Geom. 33 (1991), 749–786. Zbl 0696.35087, MR 1100211
Reference: [3] Crandall, M., Kocan, M., Lions, P. L., Swiȩch, A.: Existence results for uniformly elliptic and parabolic fully nonlinear equations.Electron. J. Differential Equations 24 (1999), 1–20.
Reference: [4] Crandall, M. G., Ishii, H., Lions, P. L.: User’s guide to viscosity solutions of second order partial differential equations.Bull. Amer. Math. Soc. 27 (1992), 1–67. Zbl 0755.35015, MR 1118699, 10.1090/S0273-0979-1992-00266-5
Reference: [5] Crandall, M. G., Lions, P. L.: Viscosity solutions of Hamilton-Jacobi equations.Trans. Amer. Math. Soc. 277 (1983), 1–42. Zbl 0599.35024, MR 0690039, 10.1090/S0002-9947-1983-0690039-8
Reference: [6] Ishii, H., Lions, P. L.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations.J. Differential Equations 83 (1990), 26–78. Zbl 0708.35031, MR 1031377, 10.1016/0022-0396(90)90068-Z
Reference: [7] Kawohl, B., Kutev, N.: Comparison principle and Lipschitz regularity for viscosity solutions of some classes of nonlinear partial differential equations.Funkcial. Ekvac. 43 (2000), 241–253. Zbl 1142.35315, MR 1795972
Reference: [8] Tersenov, Al., Tersenov, Ar.: Viscosity solutions of $p$-Laplace equation with nonlinear source.Arch. Math. (Basel) 88 (3) (2007), 259–268. MR 2305604, 10.1007/s00013-006-1873-9
Reference: [9] Trudinger, N. S.: Holder gradient estimates for fully nonlinear elliptic equations.Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 57–65. MR 0931007
.

Files

Files Size Format View
ArchMathRetro_045-2009-1_2.pdf 534.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo