Previous |  Up |  Next

Article

Title: A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator (English)
Author: Murugusundaramoorthy, G.
Author: Vijaya, K.
Author: Raina, R. K.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 45
Issue: 1
Year: 2009
Pages: 37-46
Summary lang: English
.
Category: math
.
Summary: Making use of the Dziok-Srivastava operator, we introduce a new class of complex valued harmonic functions which are orientation preserving and univalent in the open unit disc and are related to uniformly convex functions. We investigate the coefficient bounds, distortion inequalities and extreme points for this generalized class of functions. (English)
Keyword: harmonic univalent starlike functions
Keyword: Dziok-Srivastava operator
Keyword: distortion bounds
Keyword: extreme points
Keyword: uniformly convex functions
MSC: 30C45
MSC: 30C50
MSC: 33C05
MSC: 33C20
idZBL: Zbl 1212.30052
idMR: MR2591659
.
Date available: 2009-06-25T13:47:11Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/128288
.
Reference: [1] Avici, Y., Zlotkiewicz, E.: On harmonic univalent mappings.Ann. Univ. Mariae Curie-Skłodowska Sect. A 44 (1990), 1–7. MR 1157872
Reference: [2] Carlson, B. C., Shaffer, B.: Starlike and prestarlike hypergeometric functions.SIAM J. Math. Anal. 15 (2002), 737 – 745. MR 0747433, 10.1137/0515057
Reference: [3] Clunie, J., Sheil-Small, T.: Harmonic univalent functions.Ann. Acad. Sci. Fenn. Math. 9 (1984), 3–25. Zbl 0506.30007, MR 0752388
Reference: [4] Dziok, J., Srivastava, H. M.: Certain subclasses of analytic functions associated with the generalized hypergeometric function.Integral Transform. Spec. Funct. 14 (2003), 7–18. Zbl 1040.30003, MR 1949212, 10.1080/10652460304543
Reference: [5] Goodman, A. W.: On uniformly convex functions.Ann. Polon. Math. 1991 (56), 87–92. MR 1145573
Reference: [6] Jahangiri, J. M., Silverman, H.: Harmonic univalent functions with varying rrguments.Int. J. Appl. Math. 8 (3) (2002), 267–275. MR 1898507
Reference: [7] Murugusundaramoorthy, G.: A class of Ruscheweyh-Type harmonic univalent functions with varying arguments.Southwest J. Pure Appl. Math. 2 (2003), 90–95. Zbl 1050.30010, MR 2052983
Reference: [8] Rønning, F.: Uniformly convex functions and a corresponding class of starlike functions.Proc. Amer. Math. Soc. 118 (1993), 189–196. MR 1128729
Reference: [9] Rosy, T., Stephen, B. A., Subramanian, K. G., Jahangiri, J. M.: Goodman-Ronning type harmonic univalent functions.Kyungpook Math. J. 41 (2001), 45–54. Zbl 0988.30012, MR 1847436
Reference: [10] Ruscheweyh, S.: New criteria for univalent functions.Proc. Amer. Math. Soc. 49 (1975), 109–115. Zbl 0303.30006, MR 0367176, 10.1090/S0002-9939-1975-0367176-1
Reference: [11] Ruscheweyh, S.: Neighborhoods of univalent functions.Proc. Amer. Math. Soc. 81 (1981), 521–528. Zbl 0458.30008, MR 0601721, 10.1090/S0002-9939-1981-0601721-6
Reference: [12] Srivastava, H. M., Owa, S.: Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators and certain subclasses of analytic functions.Nagoya Math. J. 106 (1998), 1–28. MR 0894409
Reference: [13] Vijaya, K.: Studies on certain subclasses of harmonic functions.Ph.D. thesis, VIT University, 2006.
.

Files

Files Size Format View
ArchMathRetro_045-2009-1_3.pdf 458.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo