Previous |  Up |  Next

Article

Title: On metrics of positive Ricci curvature conformal to $M\times \mathbf{R}^m$ (English)
Author: Ruiz, Juan Miguel
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 45
Issue: 2
Year: 2009
Pages: 105-113
Summary lang: English
.
Category: math
.
Summary: Let $(M^n,g)$ be a closed Riemannian manifold and $g_E$ the Euclidean metric. We show that for $m>1$, $\left(M^n \times \mathbf{R}^m, (g+g_E)\right)$ is not conformal to a positive Einstein manifold. Moreover, $\left(M^n \times \mathbf{R}^m, (g+g_E)\right)$ is not conformal to a Riemannian manifold of positive Ricci curvature, through a radial, integrable, smooth function, $\varphi \colon \mathbf{R^m} \rightarrow \mathbf{R^+}$, for $m>1$. These results are motivated by some recent questions on Yamabe constants. (English)
Keyword: conformally Einstein manifolds
Keyword: positive Ricci curvature
MSC: 53A30
MSC: 53C21
MSC: 53C25
idZBL: Zbl 1212.53015
idMR: MR2591667
.
Date available: 2009-06-25T18:16:35Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/128293
.
Reference: [1] Akutagawa, K., Florit, L., Petean, J.: On Yamabe constants of Riemannian products.Comm. Anal. Geom. 15 (5) (2007), 947–969, e-print math. DG/0603486. Zbl 1147.53032, MR 2403191
Reference: [2] Besse, A.: Einstein manifolds.Ergeb. Math. Grenzgeb (3), 10, Springer, Berlin, 1987. Zbl 0613.53001, MR 0867684
Reference: [3] Gover, R., Nurowski, P.: Obstructions to conformally Einstein metrics in n dimensions.J. Geom. Phys. 56 (2006), 450–484. Zbl 1098.53014, MR 2171895, 10.1016/j.geomphys.2005.03.001
Reference: [4] Ilias, S.: Constantes explicites pour les inegalites de Sobolev sur les varietes riemannianes compactes.Ann. Inst. Fourier (Grenoble) 33 (2), 151–165. MR 0699492, 10.5802/aif.921
Reference: [5] Listing, M.: Conformal Einstein spaces in N-dimensions.Ann. Global Anal. Geom. 20 (2001), 183–197. Zbl 1024.53031, MR 1857177, 10.1023/A:1011612830580
Reference: [6] Listing, M.: Conformal Einstein spaces in N-dimensions II.J. Geom. Phys. 56 (2006), 386–404. Zbl 1089.53030, MR 2171892, 10.1016/j.geomphys.2005.02.008
Reference: [7] Moroianu, A., Ornea, L.: Conformally Einstein products and nearly Kähler manifolds.Ann. Global Anal. Geom. 22 (2008 (1)), 11–18, arXiv:math./0610599v3 [math.DG] (2007). MR 2369184
Reference: [8] Obata, M.: The conjectures on conformal transformations of Riemannian manifolds.J. Differential Geometry 6 (1971), 247–248. Zbl 0236.53042, MR 0303464
Reference: [9] Petean, J.: Isoperimetric regions in spherical cones and Yamabe constants of $M\times S^1$.Geom. Dedicata (2009), to appear. Zbl 1188.53035, MR 2576291
.

Files

Files Size Format View
ArchMathRetro_045-2009-2_4.pdf 511.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo