Previous |  Up |  Next

Article

Title: A generalization of Steenrod’s approximation theorem (English)
Author: Wockel, Christoph
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 45
Issue: 2
Year: 2009
Pages: 95-104
Summary lang: English
.
Category: math
.
Summary: In this paper we aim for a generalization of the Steenrod Approximation Theorem from [16, Section 6.7], concerning a smoothing procedure for sections in smooth locally trivial bundles. The generalization is that we consider locally trivial smooth bundles with a possibly infinite-dimensional typical fibre. The main result states that a continuous section in a smooth locally trivial bundles can always be smoothed out in a very controlled way (in terms of the graph topology on spaces of continuous functions), preserving the section on regions where it is already smooth. (English)
Keyword: infinite-dimensional manifold
Keyword: infinite-dimensional smooth bundle
Keyword: smoothing of continuous sections
Keyword: density of smooth in continuous sections
Keyword: topology on spaces of continuous functions
MSC: 57R10
MSC: 57R12
MSC: 58B05
idZBL: Zbl 1212.58005
idMR: MR2591666
.
Date available: 2009-06-25T18:16:46Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/128295
.
Reference: [1] Bourbaki, N.: General topology.Elements of Mathematics (Berlin) (1998), Springer-Verlag, Berlin, translated from the French. Zbl 0894.54001
Reference: [2] Dugundji, J.: Topology.Allyn and Bacon Inc., Boston, 1966. Zbl 0144.21501, MR 0193606
Reference: [3] Glöckner, H.: Infinite-dimensional Lie groups without completeness restrictions.Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups (Bȩdlewo, 2000), vol. 55, Banach Center Publ., 43–59, Polish Acad. Sci., Warsaw, 2002. Zbl 1020.58009, MR 1911979
Reference: [4] Glöckner, H., Neeb, K.-H.: Infinite-dimensional Lie groups.Basic Theory and Main Examples, volume I, Springer-Verlag, 2009, in preparation.
Reference: [5] Hamilton, R. S.: The inverse function theorem of Nash and Moser.Bull. Amer. Math. Soc. (N.S.) 7 (1) (1982), 65–222. Zbl 0499.58003, MR 0656198, 10.1090/S0273-0979-1982-15004-2
Reference: [6] Hirsch, M. W.: Differential Topology.Springer-Verlag, New York, 1976. Zbl 0356.57001, MR 0448362
Reference: [7] Keller, H. H.: Differential calculus in locally convex spaces.Lecture Notes in Math., vol. 417, Springer-Verlag, Berlin, 1974. Zbl 0293.58001, MR 0440592
Reference: [8] Kriegl, A., Michor, P. W.: Smooth and continuous homotopies into convenient manifolds agree.unpublished preprint, 2002, available from http://www.mat.univie.ac.at/$\sim $michor/.
Reference: [9] Kriegl, A., Michor, P. W.: The Convenient Setting of Global Analysis.Math. Surveys Monogr., vol. 53, Amer. Math. Soc., 1997. Zbl 0889.58001, MR 1471480
Reference: [10] Lee, J. M.: Introduction to smooth manifolds.Grad. Texts in Math., vol. 218, Springer-Verlag, New York, 2003. MR 1930091, 10.1007/978-0-387-21752-9
Reference: [11] Michor, P. W.: Manifolds of Differentiable Mappings.Shiva Mathematics Series, vol. 3, Shiva Publishing Ltd., Nantwich, 1980, out of print, online available from http://www.mat.univie.ac.at/$\sim $michor/. Zbl 0433.58001, MR 0583436
Reference: [12] Milnor, J.: Remarks on infinite-dimensional Lie groups.Relativity, Groups and Topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984, pp. 1007–1057. Zbl 0594.22009, MR 0830252
Reference: [13] Müller, C., Wockel, C.: Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group.Adv. Geom., to appear, 2009, arXiv:math/0604142.
Reference: [14] Naimpally, S. A.: Graph topology for function spaces.Trans. Amer. Math. Soc. 123 (1966), 267–272. Zbl 0151.29703, MR 0192466, 10.1090/S0002-9947-1966-0192466-4
Reference: [15] Neeb, K.-H.: Central extensions of infinite-dimensional Lie groups.Ann. Inst. Fourier (Grenoble) 52 (5) (2002), 1365–1442. Zbl 1019.22012, MR 1935553, 10.5802/aif.1921
Reference: [16] Steenrod, N.: The Topology of Fibre Bundles.Princeton Math. Ser. 14 (1951). Zbl 0054.07103, MR 0039258
Reference: [17] Wockel, C.: Smooth extensions and spaces of smooth and holomorphic mappings.J. Geom. Symmetry Phys. 5 (2006), 118–126. Zbl 1108.58006, MR 2269885
.

Files

Files Size Format View
ArchMathRetro_045-2009-2_3.pdf 478.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo