Previous |  Up |  Next

Article

Title: Product radical classes of $\ell$-groups (English)
Author: Ton, Dao-Rong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 42
Issue: 1
Year: 1992
Pages: 129-142
.
Category: math
.
MSC: 06F15
idZBL: Zbl 0773.06019
idMR: MR1152176
DOI: 10.21136/CMJ.1992.128304
.
Date available: 2009-09-24T09:17:53Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128304
.
Reference: [1] M. Anderson, T. Feil: Lattice-Ordered Groups (An Introduction).D. Riedel Publishing Company, 1988. MR 0937703
Reference: [2] S. J. Bernau: Unique representation of Archimedean lattice groups and normal Archimedean lattice rings.Proc. London Math. Soc. 15 (1965), 599–631. MR 0182661
Reference: [3] P. Conrad: Lattice-Ordered Groups.Tulane Lecture Notes, Tulane University, 1970. Zbl 0258.06011
Reference: [4] M. Darnel: Closure operators on radical classes of lattice-ordered groups.Czech. Math. J. 37(112) (1987), 51–64. Zbl 0661.06007, MR 0875127
Reference: [5] A. M. W. Glass, W. C. Holland: Lattice-Ordered Groups (Advances and Techniques).Kluwer Academic Publishers, 1989. MR 1036072
Reference: [6] W. C. Holland: Varieties of $\ell $-groups are torsion classes.Czech. Math. J. 29 (1979), 11–12. MR 0518135
Reference: [7] J. Jakubik: Radical mappings and radical classes of lattice ordered groups.Symposia Math. 21 (1977), Academic Press, 451–477. Zbl 0368.06013, MR 0491397
Reference: [8] J. Jakubik: Products of radical classes of lattice ordered groups.Acta Mathematica Comenianae 39 (1980), 31–41. Zbl 0508.06019, MR 0619260
Reference: [9] J. Jakubik: Radical subgroups of lattice ordered groups.Czech. Math J. 36(111) (1986), 285–297. Zbl 0605.06013, MR 0831316
Reference: [10] G. O. Kenny: Lattice-Ordered Groups.Ph.D. dissertation, University of Kansas, 1975.
Reference: [11] J. Martinez: Torsion theory for lattice ordered groups.Czech. Math. J. 25(100) (1975), 284–299. Zbl 0321.06020, MR 0389705
Reference: [12] J. Martinez: The fundamental theorem on torsion classes of lattice-ordered groups.Trans. Amer. Math. Soc. 259 (1980), 311–317. Zbl 0433.06016, MR 0561839, 10.1090/S0002-9947-1980-0561839-7
Reference: [13] Dao-Rong Ton: The structure of a complete $\ell $-group..
.

Files

Files Size Format View
CzechMathJ_42-1992-1_16.pdf 1.347Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo