Previous |  Up |  Next

Article

Title: Sequential convergences in $\ell$-groups without Urysohn’s axiom (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 42
Issue: 1
Year: 1992
Pages: 101-116
.
Category: math
.
MSC: 06F15
MSC: 06F20
MSC: 54H11
idZBL: Zbl 0770.06008
idMR: MR1152174
DOI: 10.21136/CMJ.1992.128306
.
Date available: 2009-09-24T09:17:34Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128306
.
Reference: [1] P. Conrad: The structure of a lattice-ordered group with a finite number of disjoint elements.Michigan Math. J. 7 (1960), 171–180. Zbl 0103.01501, MR 0116059, 10.1307/mmj/1028998387
Reference: [2] L. Fuchs: Partially ordered algebraic systems.Pergamon Press, Oxford, 1963. Zbl 0137.02001, MR 0171864
Reference: [3] M. Harminc: Sequential convergence on abelian lattice-ordered groups.Convergence structures 1984. Matem. Research, Band 24, Akademie Verlag, Berlin, 1985, pp. 153–158. MR 0835480
Reference: [4] M. Harminc: The cardinality of the system of all convergences on an abelian lattice ordered group.Czechoslov. Math. J. 37 (1987), 533–546. MR 0913986
Reference: [5] M. Harminc: Sequential convergences on lattice ordered groups.Czechoslov. Math. J. 39 (1989), 232–238. MR 0992130
Reference: [6] M. Harminc: Convergences on lattice ordered groups.Disertation, Math. Inst. Slovac Acad. Sci., 1986. (Slovak)
Reference: [7] M. Harminc, J. Jakubík: Maximal convergences and minimal proper convergences in $\ell $-groups.Czechoslov. Math. J. 39 (1989), 631–640. MR 1017998
Reference: [8] J. Jakubík: Konvexe Ketten in $\ell $-Gruppen.Časop. pěst. matem. 84 (1959), 53–63. MR 0104740
Reference: [9] J. Jakubík: Convergences and complete distributivity of lattice ordered groups.Math. Slovaca 38 (1988), 269–272. MR 0977905
Reference: [10] J. Jakubík: On some types of kernels of a convergence $\ell $-group.Czechoslov. Math. J. 39 (1989), 239–247. MR 0992131
Reference: [11] J. Jakubík: Lattice ordered groups having a largest convergence.Czechoslov. Math. J. 39 (1989), 717–729. MR 1018008
Reference: [12] J. Jakubík: Convergences and higher degrees of distributivity of lattice ordered groups and of Boolean algebras.Czechoslov. Math. J. 40 (1990), 453–458. MR 1065024
Reference: [13] B. Z. Vulih: Vvedenie v teoriyu poluuporyadoqennyh prostranstv.Moskva, 1961.
.

Files

Files Size Format View
CzechMathJ_42-1992-1_14.pdf 1.459Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo