Title:
|
Sequential convergences in $\ell$-groups without Urysohn’s axiom (English) |
Author:
|
Jakubík, Ján |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
42 |
Issue:
|
1 |
Year:
|
1992 |
Pages:
|
101-116 |
. |
Category:
|
math |
. |
MSC:
|
06F15 |
MSC:
|
06F20 |
MSC:
|
54H11 |
idZBL:
|
Zbl 0770.06008 |
idMR:
|
MR1152174 |
DOI:
|
10.21136/CMJ.1992.128306 |
. |
Date available:
|
2009-09-24T09:17:34Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128306 |
. |
Reference:
|
[1] P. Conrad: The structure of a lattice-ordered group with a finite number of disjoint elements.Michigan Math. J. 7 (1960), 171–180. Zbl 0103.01501, MR 0116059, 10.1307/mmj/1028998387 |
Reference:
|
[2] L. Fuchs: Partially ordered algebraic systems.Pergamon Press, Oxford, 1963. Zbl 0137.02001, MR 0171864 |
Reference:
|
[3] M. Harminc: Sequential convergence on abelian lattice-ordered groups.Convergence structures 1984. Matem. Research, Band 24, Akademie Verlag, Berlin, 1985, pp. 153–158. MR 0835480 |
Reference:
|
[4] M. Harminc: The cardinality of the system of all convergences on an abelian lattice ordered group.Czechoslov. Math. J. 37 (1987), 533–546. MR 0913986 |
Reference:
|
[5] M. Harminc: Sequential convergences on lattice ordered groups.Czechoslov. Math. J. 39 (1989), 232–238. MR 0992130 |
Reference:
|
[6] M. Harminc: Convergences on lattice ordered groups.Disertation, Math. Inst. Slovac Acad. Sci., 1986. (Slovak) |
Reference:
|
[7] M. Harminc, J. Jakubík: Maximal convergences and minimal proper convergences in $\ell $-groups.Czechoslov. Math. J. 39 (1989), 631–640. MR 1017998 |
Reference:
|
[8] J. Jakubík: Konvexe Ketten in $\ell $-Gruppen.Časop. pěst. matem. 84 (1959), 53–63. MR 0104740 |
Reference:
|
[9] J. Jakubík: Convergences and complete distributivity of lattice ordered groups.Math. Slovaca 38 (1988), 269–272. MR 0977905 |
Reference:
|
[10] J. Jakubík: On some types of kernels of a convergence $\ell $-group.Czechoslov. Math. J. 39 (1989), 239–247. MR 0992131 |
Reference:
|
[11] J. Jakubík: Lattice ordered groups having a largest convergence.Czechoslov. Math. J. 39 (1989), 717–729. MR 1018008 |
Reference:
|
[12] J. Jakubík: Convergences and higher degrees of distributivity of lattice ordered groups and of Boolean algebras.Czechoslov. Math. J. 40 (1990), 453–458. MR 1065024 |
Reference:
|
[13] B. Z. Vulih: Vvedenie v teoriyu poluuporyadoqennyh prostranstv.Moskva, 1961. |
. |