Previous |  Up |  Next

Article

Title: On the uncomplemented subspace $K(X,Y)$ (English)
Author: John, Kamil
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 42
Issue: 1
Year: 1992
Pages: 167-173
.
Category: math
.
MSC: 46B28
MSC: 47B07
MSC: 47D15
MSC: 47L05
idZBL: Zbl 0776.46016
idMR: MR1152178
DOI: 10.21136/CMJ.1992.128319
.
Date available: 2009-09-24T09:18:08Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128319
.
Reference: [1] D. Arterburn, R. Whitney: Projections in the space of bounded linenar operators.Pacific J. Math. 15 (1965), 739–746. MR 0187052, 10.2140/pjm.1965.15.739
Reference: [2] C. Bessaga, A. Pelczynski: On bases and unconditional convergence of series in Banach spaces.Studia Math. 17 (1958), 151–164. MR 0115069, 10.4064/sm-17-2-151-164
Reference: [3] J. Diestel, T. J. Morrison: The Radon-Nikodym property for the space of operators.Math. Nachrichten 92 (1979), 7–12. MR 0563569, 10.1002/mana.19790920102
Reference: [4] J. Diestel: Sequences and series in Banach spaces.Graduate Texts in Mathematics 92, Springer, 1984. MR 0737004
Reference: [5] L. Drewnowski: An extension of a theorem of Rosenthal on operators acting from $l_\infty (M)$.Studia Math. 57 (1976), 209–215. MR 0423116, 10.4064/sm-57-3-209-215
Reference: [6] G. Emmanuele: On the containment of $c_0$ by spaces of compact operators.Bull. sci. mat. 115 (1991), 177–184. MR 1101022
Reference: [7] M. Feder: On subspaces of spaces with an unconditional basis and spaces of operators.Illinois J. Math. 24 (1980), 196–205. Zbl 0411.46009, MR 0575060, 10.1215/ijm/1256047715
Reference: [8] K. John: On the space $K(P,P^*)$ of compact operators on Pisier space $P$.submitted for publ.
Reference: [9] J. Johnson: Remarks on Banach spaces of compact operators.J. funct. anal. 32 (1979), 304–311. Zbl 0412.47024, MR 0538857, 10.1016/0022-1236(79)90042-9
Reference: [10] N. J. Kalton: Exhaustive operators and vector measures.Proc. Edinburgh, Math. Soc. 19 (1974), 291–300. MR 0388099
Reference: [11] N. J. Kalton: Spaces of compact operators.Math. Ann. 208 (1974), 267–278. Zbl 0266.47038, MR 0341154, 10.1007/BF01432152
Reference: [12] P. Kissel, E. Schock: Lucid operators on Banach spaces.Comment. Math. Univ. Carolinae 31 (1990), 489–499. MR 1078483
Reference: [13] T. H. Kuo: Projections in the space of bounded linear operators.Pacific J. Math. 52 (1974), 475–480. MR 0352939, 10.2140/pjm.1974.52.475
Reference: [14] J. Pisier: Counterexamples to a conjecture of Grothendieck.Acta Math. 151 (1983), 180–208. Zbl 0542.46038, MR 0723009, 10.1007/BF02393206
Reference: [15] H. P. Rosenthal: On relatively disjoint families of measures, with some applications to Banach space theory.Studia Math. 37 (1970), 13–36. Zbl 0227.46027, MR 0270122, 10.4064/sm-37-1-13-36
Reference: [16] W. Ruess: Duality and geometry of spaces of compact operators..Functional Analysis: Surveys and Recent Results III, North Holland, Amsterdam, 1984 (Mathematics Studies, 90), pp. 59–78. MR 0761373
Reference: [17] E. Thorp: Projections onto the space of compact operators.Pacific J. Math. 10 (1960), 693–696. MR 0114128, 10.2140/pjm.1960.10.693
Reference: [18] A. E. Tong: On the existence of non-compact bounded linear operators between certain Banach spaces.Israel J. Math. 10 (1971), 451–456. MR 0296663, 10.1007/BF02771732
Reference: [19] A. E. Tong, D. R. Wilken: The uncomplemented subspace $K(E,F)$.Studia Math. 37 (1971), 227–236. MR 0300058, 10.4064/sm-37-3-227-236
Reference: [20] H. O. Tylli: Weak compactness of multiplication operators on spaces of bounded linear operators.(preprint). Zbl 0760.47019
.

Files

Files Size Format View
CzechMathJ_42-1992-1_18.pdf 756.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo