Previous |  Up |  Next

Article

Title: Bifurcation of periodic solutions to differential inequalities in $\mathbb{R}^3$ (English)
Author: Bosák, Miroslav
Author: Kučera, Milan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 42
Issue: 2
Year: 1992
Pages: 339-363
.
Category: math
.
MSC: 34A40
MSC: 34A47
MSC: 34A60
MSC: 34C23
MSC: 34C25
MSC: 47H15
idZBL: Zbl 0794.34031
idMR: MR1179505
DOI: 10.21136/CMJ.1992.128335
.
Date available: 2009-09-24T09:21:56Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128335
.
Reference: [1] J. P. Aubin, A. Cellina: Differential Inclusions.Springer-Verlag, Berlin, 1984. MR 0755330
Reference: [2] M. Degiovanni, A. Marino: Non-smooth variational bifurcation.Atti Acc. Lincei Rend. Fis. (8) LXXXI (1987), 259–270. MR 0999818
Reference: [3] J. Eisner, M. Kučera: Hopf bifurcation and ordinary differential inequalities.(to appear). MR 1354920
Reference: [4] M. Kučera: Bifurcation of periodic solutions to ordinary differential inequalities.(to appear).
Reference: [5] M. Kučera: Bifurcation points of variational inequalities.Czechoslovak Math. J. 32 (107) (1982), 208–226. MR 0654057
Reference: [6] E. Miersemann: Über höhere Verzweigungspunkte nichtlinearen Variationsungleichungen..Math. Nachr. 85 (1978), 195–213. MR 0517651, 10.1002/mana.19780850116
Reference: [7] M. Pazy: Semi-groups of nonlinear contractions in Hilbert space.Problems in Nonlinear Analysis (C.I.M.E., IV Ciclo, Varenna, 1970), Edizioni Cremonese, Rome, 1971, pp. 343–430. Zbl 0228.47038, MR 0291877
Reference: [8] P. Quittner: Spectral analysis of variational inequalities.Comment. Math. Univ. Carol. 27 (1986), 605–629. MR 0873631
.

Files

Files Size Format View
CzechMathJ_42-1992-2_15.pdf 1.887Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo