Previous |  Up |  Next


Title: Measure-valued solutions and asymptotic behavior of a multipolar model of a boundary layer (English)
Author: Málek, Josef
Author: Nečas, Jindřich
Author: Novotný, Antonín
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 42
Issue: 3
Year: 1992
Pages: 549-576
Category: math
MSC: 35B40
MSC: 35Q30
MSC: 35Q35
MSC: 73B25
MSC: 76A05
MSC: 76A99
MSC: 76D10
idZBL: Zbl 0774.76008
idMR: MR1179317
Date available: 2009-09-24T09:24:08Z
Last updated: 2016-04-06
Stable URL:
Reference: [1] A.V. Babin, M.I. Višik: Attractors of partial differential equations and estimates of their dimensions.Uspekhi Mat. Nauk 38 (1983). (Russian) MR 1182818
Reference: [2] J. Ball: A version of the fundamental theorem for Young measures.PDE’s and continuum models of phase transitions, Lecture Notes in Physics 344 (1989), 207–215. Zbl 0991.49500, MR 1036070, 10.1007/BFb0024945
Reference: [3] H. Bellout, F. Bloom, J. Nečas: Phenomenological behavior multipolar viscous fluids.(to appear). MR 1178435
Reference: [4] R.E. Edwards: Functional analysis.Rinehart and Winston, Holt, 1965. Zbl 0182.16101, MR 0221256
Reference: [5] A.E. Green, R.S. Rivlin: Multipolar continuum mechanics.Arch. Rat. Mech. Anal. 16 (1964), 325–353. MR 0182191
Reference: [6] A.E. Green, R.S. Rivlin: Simple force and stress multipoles.Arch. Rat. Mech. Anal. 17 (1964), 113–147. MR 0182192
Reference: [7] E. Hewitt, K. Stromberg: Real and abstract analysis.Springer, 1965. MR 0367121
Reference: [8] M.A. Krasnoselski, J.B. Ruticki: Convex functions and Orlicz spaces.GITL, Moscow, 1958. (Russian) MR 0106412
Reference: [9] O.A. Ladyženskaya: Mathematical problems of dynamics of viscous incompressible fluids.Nauka, Moscow. (Russian)
Reference: [10] O.A. Ladyženskaya: On the finiteness of the dimension of bounded invariant sets for the Navier-Stokes equations and other related dissipative systems.J. Soviet Math. (1985), 714–725. 10.1007/BF02112336
Reference: [11] J.L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [12] J.L. Lions, E. Magenes: Problèmes aux limites non homogènes et applications.Dunod, Paris, 1968.
Reference: [13] J. Nečas: Sur les normes équivalentes dans $W^k_p (\Omega )$ et sur la coercivité des formes formellement positives.Les presses de lUnivesité de Montréal (1966).
Reference: [14] J. Nečas, A. Novotný: Some qualitative properties of the viscous compressible multipolar heat conductive flow.Commun. in Partial Differential Equations 16(2&3) (1991), 197–220. MR 1104099, 10.1080/03605309108820757
Reference: [15] J. Nečas, A. Novotný, M. Šilhavý: Global solution to the compressible isothermal multipolar fluid.J. Math. Anal. Appl. 162 (1991), 223–241. MR 1135273, 10.1016/0022-247X(91)90189-7
Reference: [16] J. Nečas, A. Novotný, M. Šilhavý: Global solution to the ideal compressible heat-conductive fluid.Comment. Math. Univ. Carolinae 30,3 (1989), 551–564. MR 1031872
Reference: [17] J. Nečas, A. Novotný, M. Šilhavý: Global solution to the viscous compressible barotropic fluid.(to appear).
Reference: [18] J. Nečas, M. Šilhavý: Multipolar viscous fluids.Quart. Appl. Math. 49 (1991), 247–265. MR 1106391
Reference: [19] A. Novotný: Viscous multipolar fluids—physical background and mathematical theory.Progress in Physics 39 (1991). MR 1184232
Reference: [20] Simon J.: Compact sets in the space $L^p(0,T;B)$.Annali di Mat. Pura ed Applic. 146 (1987), 65–96. MR 0916688
Reference: [21] R. Temam: Infinite-dimensional dynamical systems in mechanics and physics.Springer-Verlag, New York, 1988. Zbl 0662.35001, MR 0953967


Files Size Format View
CzechMathJ_42-1992-3_16.pdf 2.591Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo