Previous |  Up |  Next

Article

Title: On mean value theorems for small geodesic spheres in Riemannian manifolds (English)
Author: Kôzaki, Masanori
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 42
Issue: 3
Year: 1992
Pages: 519-547
.
Category: math
.
MSC: 53C25
MSC: 60D05
idZBL: Zbl 0782.53038
idMR: MR1179316
DOI: 10.21136/CMJ.1992.128352
.
Date available: 2009-09-24T09:24:01Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128352
.
Reference: [1] K. B. Athreya and T. G. Kuryz: A generalization of Dynkin’s identity.Ann. Probability 1 (1973), 570–579. MR 0348847, 10.1214/aop/1176996886
Reference: [2] A. L. Besse: Manifolds all of whose Geodesics are Closed.Springer-Verlag, Berlin Heidelberg New York, 1978. Zbl 0387.53010, MR 0496885
Reference: [3] Q. S. Chi: A curvature characterization of certain locally rank-one symmetric spaces.J. Differential Geometry 28 (1988), 187–202. Zbl 0654.53053, MR 0961513, 10.4310/jdg/1214442277
Reference: [4] D. M. DeTurck and J. L. Kazdan: Some regularity theorems in Riemannian geometry.Ann. Scient. Éc. Norm. Sup., 4$^{\text{e}}$ série 14 (1981), 249–260. MR 0644518
Reference: [5] E. B. Dynkin: Markov Processes, vol. 2.Springer-Verlag, Berlin Heidelberg New York, 1965. MR 0193671
Reference: [6] A. Friedman: Function-theoretic characterization of Einstein spaces and harmonic spaces.Transactions Amer. Math. Soc. 101 (1961), 240–258. Zbl 0115.39204, MR 0131839, 10.1090/S0002-9947-1961-0131839-8
Reference: [7] A. Gray and M. Pinsky: The mean exit time from a small geodesic ball in a Riemannian manifold.Bulletin des Sciences Mathematiques, 2$^{\text{e}}$ série 107 (1983), 345–370. MR 0732357
Reference: [8] A. Gray and L. Vanhecke: Riemannian geometry as determined by the volume of small geodesic balls.Acta Math. 142 (1979), 157–198. MR 0521460, 10.1007/BF02395060
Reference: [9] A. Gray and T. J. Willmore: Mean-value theorems for Riemannian manifolds.Proc. Roy. Soc. Edinburgh 92A (1982), 343–364. MR 0677493
Reference: [10] O. Kowalski: The second mean-value operator on Riemannian manifolds.Proceedings of the CSSR-GDR-Polish Conference on Differential Geometry and its Applications, Nove Mesto 1980, pp. 33–45, Universita Karlova, Praha, 1982. MR 0663211
Reference: [11] O. Kowalski: A comparison theorem for spherical mean-value operators in Riemannian manifolds.Proc. London Math. Soc. (3) 47 (1983), 1–14. Zbl 0519.53040, MR 0698924
Reference: [12] M. Kôzaki and Y. Ogura: On geometric and stochastic mean values for small geodesic spheres in Riemannian manifolds.Tsukuba J. Math. 11 (1987), 131–145. MR 0899727, 10.21099/tkbjm/1496160508
Reference: [13] M. Kôzaki and Y. Ogura: On the independence of exit time and exit position from small geodesic balls for Brownian motions on Riemannian manifolds.Math. Z. 197 (1988), 561–581. MR 0932686, 10.1007/BF01159812
Reference: [14] M. Kôzaki and Y. Ogura: Riemannian manifolds with stochastic independence conditions are rich enough.Probability theory and Math. statistics (Kyoto 1986), pp. 206–213 vol. 1299, Springer, Berlin-Heidelberg-New York, 1988. MR 0935991
Reference: [15] M. Liao: Hitting distributions of small geodesic spheres.Ann. Probability 16 (1988), 1039–1050. Zbl 0651.58037, MR 0942754, 10.1214/aop/1176991676
Reference: [16] E. M. Patterson: A class of critical Riemannian metrics.J. London Math. Soc. 23 (1981), no. 2, 349–358. Zbl 0417.53025, MR 0609115
Reference: [17] M. Pinsky: Moyenne stochastique sur une variété riemannienne.C. R. Acad. Sci. Paris, Série I 292 (1981), 991–994. Zbl 0518.53046, MR 0630934
Reference: [18] M. Pinsky: Brownian motion in a small geodesic ball.Asterique 132, Actes du Colloque Laurant Schwartz, 1985, pp. 89–101. MR 0816762
Reference: [19] M. Pinsky: Independence implies Einstein metric, preprint..
Reference: [20] T. Sakai: On eigen-values of Laplacian and curvature of Riemannian manifold.Tôhoku Math. J. 23 (1971), 589–603. Zbl 0237.53040, MR 0303465, 10.2748/tmj/1178242547
Reference: [21] K. Sekigawa and L. Vanhecke: Volume-preserving geodesic symmetries on four-dimensional 2-stein spaces.Kodai Math. J. 9 (1986), 215–224. MR 0842869, 10.2996/kmj/1138037204
Reference: [22] T. J. Willmore: Mean value theorems in harmonic Riemannian spaces.J. London Math. Soc. 25 (1950), 54–57. Zbl 0036.23403, MR 0033408, 10.1112/jlms/s1-25.1.54
.

Files

Files Size Format View
CzechMathJ_42-1992-3_15.pdf 2.908Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo