Previous |  Up |  Next

Article

Title: Subcoherent algebras (English)
Author: Duda, Jaromír
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 2
Year: 1993
Pages: 281-284
.
Category: math
.
MSC: 08A05
MSC: 08A30
MSC: 08B05
idZBL: Zbl 0789.08005
idMR: MR1211750
DOI: 10.21136/CMJ.1993.128395
.
Date available: 2009-09-24T09:29:58Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128395
.
Reference: [1] Chajda, I.: Weak coherence of congruences.Czechoslovak Math. J. 41 (1991), 149–154. Zbl 0796.08003, MR 1087635
Reference: [2] Clark, D.M., Fleischer, I.: $A \times A$ congruence coherent implies $A$ congruence permutable.Algebra Univ. 24 (1987), 192. MR 0921544, 10.1007/BF01188397
Reference: [3] Csákány, B.: Characterizations of regular varieties.Acta Sci. Math. 31 (1970), 187–189. MR 0272697
Reference: [4] Davey, B.A., Miles, K.R., Schumann, V.J.: Quasi-identities, Mal’cev conditions and congruence regularity.Acta Sci. Math. 51 (1987), 39–55. MR 0911557
Reference: [5] Duda, J.: $A \times A$ congruence coherent implies $A$ congruence regular.Algebra Univ. 28 (1991), 301–302. Zbl 0735.08001, MR 1106060, 10.1007/BF01190858
Reference: [6] Duda, J.: Mal’cev conditions for varieties of subregular algebras.Acta Sci. Math. 51 (1987), 329–334. Zbl 0647.08002, MR 0940937
Reference: [7] Fichtner, K.: Varieties of universal algebras with ideals.Mat. Sbornik 75(117) (1968), 445–453. Zbl 0213.29602, MR 0222001
Reference: [8] Fraser, G.A., Horn, A.: Congruence relations in direct products.Proc. Amer. Math. Soc. 26 (1970), 390–394. MR 0265258, 10.1090/S0002-9939-1970-0265258-1
Reference: [9] Geiger, D.: Coherent algebras.Notices Amer. Math. Soc. 21 (1974), A-436.
Reference: [10] Hagemann, J.: On regular and weakly regular congruences.Preprint 75 (1973), TH-Darmstadt.
Reference: [11] Mal’cev, A.I.: On the general theory of algebraic systems.Mat. Sbornik 35(77) (1954), 3–20.
Reference: [12] Timm, J.: On regular algebras.Colloq. Math. Soc. János Bolyai 17. Contributions to universal algebra, Szeged, 1975, pp. 503–514. MR 0491418
Reference: [13] Werner, H.: A Mal’cev condition for admissible relations.Algebra Univ 3 (1973), 263. Zbl 0276.08004, MR 0330009, 10.1007/BF02945126
.

Files

Files Size Format View
CzechMathJ_43-1993-2_9.pdf 435.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo