Previous |  Up |  Next


Title: Every ${\rm M}\sb1$-integrable function is Pfeffer integrable (English)
Author: Nonnenmacher, D. J. F.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 2
Year: 1993
Pages: 327-330
Category: math
MSC: 26A39
MSC: 26A42
MSC: 26B20
idZBL: Zbl 0789.26006
idMR: MR1211754
DOI: 10.21136/CMJ.1993.128400
Date available: 2009-09-24T09:30:32Z
Last updated: 2020-07-29
Stable URL:
Reference: [Bcz] Buczolich Z.: A general Riemann complete integral in the plane.(to appear). Zbl 0749.26005, MR 1139326
Reference: [JKS] Jarník J., Kurzweil J., Schwabik Š.: On Mawhin’s approach to multiple nonabsolutely convergent integral.Časopis Pěst. Mat. 108 (1983), 356–380. MR 0727536
Reference: [Ju-Kn] Jurkat W.B., Knizia R.W.: A characterization of multi-dimensional Perron integrals and the fundamental theorem.Can. J. Math. 43 (3) (1991), 526–539. MR 1118008, 10.4153/CJM-1991-032-8
Reference: [Maw1] Mawhin J.: Generalized Riemann integrals and the divergence theorem for differentiable vector fields.Proceedings of the Int. Christoffel Symposium, Birkhäuser, Basel, 1981, 704–714. MR 0661109
Reference: [Maw2] Mawhin J.: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields.Czech. Math. J. 31 (106) (1981), 614–632. Zbl 0562.26004, MR 0631606
Reference: [Mkh] Mkhalfi A.: On a generalized multiple integral and the divergence theorem.Bull. Soc. Math. Belg. 40 (1988), no. 1, ser. B, 111–130. Zbl 0658.26008, MR 0951010
Reference: [Ost] Ostaszewski K.M.: Henstock integration in the plane.Memoirs of the American Math. Soc., Providence 63, no. 353. Zbl 0596.26005, MR 0856159
Reference: [Pf] Pfeffer W.F.: The divergence theorem.Trans American Math. Soc. 295 (1986), . Zbl 0596.26007, MR 0833702, 10.1090/S0002-9947-1986-0833702-0


Files Size Format View
CzechMathJ_43-1993-2_13.pdf 501.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo