Previous |  Up |  Next

Article

Title: On commutativity of rings with constraints on subsets (English)
Author: Abujabal, H. A. S.
Author: Khan, M. A.
Author: Khan, M. S.
Author: Samman, M. S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 3
Year: 1993
Pages: 439-449
.
Category: math
.
MSC: 16N40
MSC: 16R40
MSC: 16U70
MSC: 16U80
idZBL: Zbl 0808.16037
idMR: MR1249613
DOI: 10.21136/CMJ.1993.128410
.
Date available: 2009-09-24T09:32:10Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128410
.
Reference: [1] H. A. S. Abujabal and M. S. Khan: On commutativity theorems for rings.Internat. J. Math. $\&$ Math. Sci. 13 (1990), 87–92. MR 1038650, 10.1155/S0161171290000126
Reference: [2] H. A. S. Abujabal: A generalization of some commutativity theorems for rings I.Tamkang J. Math. 21 (1990), 239–245. Zbl 0741.16012, MR 1079308
Reference: [3] H. A. S. Abujabal: A generalization of some commutativity theorems for rings II.Riv. Mat. Univ. Parma (4) 16 (1990), 131–140. Zbl 0741.16013, MR 1105734
Reference: [4] H. A. S. Abujabal: Commutativity of one sided $s$-unital rings.Resultate Math. 18 (1990), 189–196. Zbl 0727.16021, MR 1078416, 10.1007/BF03323164
Reference: [5] H. E. Bell: The identity $(xy)^n=x^ny^n$: does it buy commutativity.Math. Mag. 55 (1982), 165–170. MR 0653431, 10.2307/2690084
Reference: [6] M. Ashraf and M. A. Quadri: On commutativity of associative rings.Bull. Austral. Math. Soc. 38 (1988), 267–271. MR 0969917, 10.1017/S0004972700027544
Reference: [7] M. Ashraf and M. A. Quadri: On commutativity of associative rings with constraints involving a subset.Radovi Mat. 5 (1989), 141–149. MR 1012730
Reference: [8] I. N. Herstein: The structure of certain class of rings.Amer. J. Math. 75 (1953), 864–871. MR 0058580, 10.2307/2372554
Reference: [9] I. N. Herstein: Two remarks on the commutativity of rings.Amer. J. Math. 73 (1951), 756–762.
Reference: [10] Y. Hirano, Y. Kobayashi and H. Tominaga: Some polynomial identities and commutativity of $s$-unital rings.Math. J. Okayama Univ. 24 (1982), 7–13. MR 0660049
Reference: [11] T. P. Kezlan: A note on commutativity of semiprime PI-rings.Math. Japon. 27 (1982), 267– 268. Zbl 0481.16013, MR 0655230
Reference: [12] H. Komatsu: A commutativity theorem for rings.Math. J. Okayama Univ. 26 (1984), 109–111. Zbl 0568.16017, MR 0779780
Reference: [13] H. Komatsu, T. Nishinaka and H. Tominaga: On commutativity of rings.Radovi Mat. 6 (1990), 303–311. MR 1096712
Reference: [14] H. Komatsu and H. Tominaga: Some commutativity conditions for rings with unity.Resultate Math. 19 (1991), 83–88. MR 1091958, 10.1007/BF03322418
Reference: [15] W. K. Nicholson and A. Yaqub: A commutativity theorem for rings and groups.Canad. Math. Bull. 22 (1979), 419–423. MR 0563755, 10.4153/CMB-1979-055-9
Reference: [16] E. Psomopoulos: A commutativity theorem for rings.Math. Japon. 29 (1984), 371–373. Zbl 0548.16029, MR 0752233
Reference: [17] M. A. Quadri and M. A. Khan: A commutativity theorem for left $s$-unital rings.Bull. Inst. Math. Acad. Sinica 15 (1987), 323–327. MR 0942792
Reference: [18] M. A. Quadri and M. A. Khan: A commutativity theorem for associative rings.Math. Japon. 33 (1988), 275–279. MR 0944028
Reference: [19] H. Tominaga and A. Yaqub: Some commutativity properties for rings II.Math. J. Okayama Univ. 25 (1983), 173–179. MR 0719622
Reference: [20] H. Tominaga and A. Yaqub: A commutativity theorem for one sided $s$-unital rings.Math. J. Okayama Univ. 26 (1984), 125–128. MR 0779783
.

Files

Files Size Format View
CzechMathJ_43-1993-3_6.pdf 999.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo