Previous |  Up |  Next

Article

Title: Some cardinal generalizations of pseudocompactness (English)
Author: Retta, Teklehaimanot
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 3
Year: 1993
Pages: 385-390
.
Category: math
.
MSC: 54D20
MSC: 54D30
idZBL: Zbl 0798.54032
idMR: MR1249608
DOI: 10.21136/CMJ.1993.128417
.
Date available: 2009-09-24T09:31:32Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128417
.
Reference: [1] W. W. Comfort and S. Negrepontis: Chain conditions in topology.Cambridge University press, 1982. MR 0665100
Reference: [2] Z. Frolík: Generalizations of compact and Lindelöf spaces.Czechoslovak Math. J. 84 (1959), 174–217.
Reference: [3] L. Gilman and M. Jerison: Rings of continuous functions.Van Nostrand, Princeton, N.J., 1960. MR 0116199
Reference: [4] I. Glicksberg: Stone-Čech compactifications of products.Trans. Amer. Math. Soc. 90 (1959), 369–382. Zbl 0089.38702, MR 0105667
Reference: [5] J. F. Kennison: $m$-pseudocompactness.Trans. Amer. Math. Soc. 104 (1962), 436–442. Zbl 0111.35004, MR 0145478
Reference: [6] V. Saks and R. M. Stephenson: Initially $m$-compact spaces.Proc. Amer. Math. Soc. 28 (1971), 279–288. MR 0273570
Reference: [7] R. M. Stephenson, Jr.: Initially $m$-compact spaces.Handbook of set theoretical topology, K. Kunen and J. E. Vaughan, Ed., North Holland, 1984.
Reference: [8] R. M. Stephenson, Jr. and J. E. Vaughan: Products of initially $m$-compact spaces.Trans. Amer. Math. Soc. 196 (1974), 177–189. MR 0425898
.

Files

Files Size Format View
CzechMathJ_43-1993-3_1.pdf 648.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo