Previous |  Up |  Next

Article

Title: A weaker form of Baer’s splitting problem for torsion theories (English)
Author: Teply, Mark L.
Author: Torrecillas, Blas
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 4
Year: 1993
Pages: 663-674
.
Category: math
.
MSC: 16D50
MSC: 16D80
MSC: 16E10
MSC: 16S90
idZBL: Zbl 0808.16033
idMR: MR1258428
DOI: 10.21136/CMJ.1993.128426
.
Date available: 2009-09-24T09:34:29Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128426
.
Reference: [1] F. W. Call and T. S. Shores: The Splitting of Bounded Torsion Submodules.Commun. Alg. 9 (1981), 1161–1214. MR 0617781, 10.1080/00927878108822640
Reference: [2] H. Cartan and S. Eilenberg: Homological Algebra.Princeton, 1956. MR 0077480
Reference: [3] V. C. Cateforis and F. L. Sandomierski: The Torsion Submodule Splits Off.J. Algebra 10 (1968), 149–165. MR 0241465, 10.1016/0021-8693(68)90091-4
Reference: [4] J. Cozzens: Homological Properties of the Ring of Differential Polynomials.Bull. Amer. Math. Soc. 76 (1970), 75–79. Zbl 0213.04501, MR 0258886, 10.1090/S0002-9904-1970-12370-9
Reference: [5] P. C. Eklof, L. Fuchs, and S. Shelah: Baer Modules Over Domains.Trans. Amer. Math. Soc. 322 (1990), 547–560. MR 0974514, 10.1090/S0002-9947-1990-0974514-8
Reference: [6] L. Fuchs and G. Viljoen: A Weaker Form of Baer’s Splitting Problem Over Valuation Domains.Questiones Math. 14 (1991), 227–236. MR 1107683, 10.1080/16073606.1991.9631639
Reference: [7] J. D. Fuelberth and M. L. Teply: The Torsion Submodule Splits Off.Math. Ann. 188 (1970), 270–284. MR 0276264, 10.1007/BF01431462
Reference: [8] J. D. Fuelberth and M. L. Teply: The Singular Submodule of a Finitely Generated Module Splits Off.Pacific J. Math. 40 (1972), 73–82. MR 0306266, 10.2140/pjm.1972.40.73
Reference: [9] J. S. Golan: Torsion Theories, Pitman Monographs 29.Longman Scientific and Technical/John Wiley, New York, 1986. MR 0880019
Reference: [10] L. R. Goodearl: Singular Torsion and the Splitting Properties.Mem. Amer. Math. Soc. 124 (1972). Zbl 0242.16018, MR 0340335
Reference: [11] R. P. Grimaldi: Baer and UT-modules Over Domains.Pacific J. Math. 54 (1974), 59–72. Zbl 0283.13004, MR 0376650, 10.2140/pjm.1974.54.59
Reference: [12] G. Helzer: On Divisibility and Injectivity.Canad. J. Math. 18 (1966), 901–919. Zbl 0145.26502, MR 0199225, 10.4153/CJM-1966-091-2
Reference: [13] I. Kaplansky: Modules Over Dedekind Rings and Valuation Rings.Trans. Amer. Math. Soc. 72 (1952), 327–340. Zbl 0046.25701, MR 0046349, 10.1090/S0002-9947-1952-0046349-0
Reference: [14] I. Kaplansky: The Splitting of Modules Over Integral Domains.Archiv. der Math. 13 (1962), 341–343. Zbl 0108.26302, MR 0144939, 10.1007/BF01650081
Reference: [15] J. C. Robson: Idealizers and Hereditary Noetherian Prime Rings.J. Algebra 22 (1972), 45–81. Zbl 0239.16003, MR 0299639, 10.1016/0021-8693(72)90104-4
Reference: [16] J. J. Rotman: An Introduction to Homological Algebra.Academic Press, New York, 1979. Zbl 0441.18018, MR 0538169
Reference: [17] B. Stenström: Rings of Quotients, Die Grundlehren der math. Wiss. in Einzeld. 217.Springer-Verlag, Berlin, 1975. MR 0389953
Reference: [18] M. L. Teply: On a Class of Divisible Modules.Pacific J. Math. 45 (1973), 653–668. MR 0318208, 10.2140/pjm.1973.45.653
.

Files

Files Size Format View
CzechMathJ_43-1993-4_8.pdf 1.108Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo