Previous |  Up |  Next

Article

Title: Removable singularities for Bloch and normal functions (English)
Author: Riihentaus, Juhani
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 4
Year: 1993
Pages: 723-741
.
Category: math
.
MSC: 32A20
MSC: 32D15
MSC: 32D20
MSC: 32F45
idZBL: Zbl 0799.32012
idMR: MR1258432
DOI: 10.21136/CMJ.1993.128430
.
Date available: 2009-09-24T09:34:59Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128430
.
Reference: [1] S. Bochner: Weak solutions of linear partial differential equations.J. Math. Pures Appl. 35 (1956), 193–202. Zbl 0070.31502, MR 0081446
Reference: [2] L.A. Campbell and R.H. Ogawa: On preserving the Kobayashi pseudodistance.Nagoya Math. J. 57 (1975), 37–47. MR 0372258, 10.1017/S0027763000016536
Reference: [3] L.A. Campbell, A. Howard and T. Ochiai: Moving holomorphic disks off analytic subsets.Proc. Amer. Math. Soc. 60 (1976), 106–108. MR 0425186, 10.1090/S0002-9939-1976-0425186-0
Reference: [4] J.A. Cima and I.R. Graham: Removable singularities for Bloch and BMO functions.Ill. J. Math. 27 (1983), 691–703. MR 0720102, 10.1215/ijm/1256046256
Reference: [5] J.A. Cima and S.G. Krantz: The Lindelöf principle and normal functions of several complex variables.Duke Math. J. 50 (1983), 303–328. MR 0700143
Reference: [6] H. Federer: Geometric measure theory.Springer, Berlin, 1969. Zbl 0176.00801, MR 0257325
Reference: [7] J.B. Garnett: Bounded analytic functions.Academic Press, New York, 1981. Zbl 0469.30024, MR 0628971
Reference: [8] I.R. Graham: Removable singularities for holomorphic functions which satisfy the area-BMO condition.Several Complex Variables, Proc. Hangzhou Conf. 1981, J.J. Kohn, Q.-k. Lu, R. Remmert and Y.T. Siu (eds.), Birkhäuser Boston, Inc., Boston, Mass., 1984, pp. 175–180. MR 0897594
Reference: [9] R. Harvey and J.C. Polking: Removable singularities of solutions of linear partial differential equations.Acta Math. 125 (1970), 39–56. MR 0279461, 10.1007/BF02838327
Reference: [10] L.I. Hedberg: Removable singularities and condenser capacities.Ark. Mat. 12 (1974), 181–201. Zbl 0297.30017, MR 0361050, 10.1007/BF02384755
Reference: [11] J. Hyvönen and J. Riihentaus: Removable singularities for holomorphic functions with locally finite Riesz mass.J. London Math. Soc. (2) 35 (1987), 296–302. MR 0881518, 10.1112/jlms/s2-35.2.296
Reference: [12] P. Järvi: An extension theorem for normal functions.Proc. Amer. Math. Soc. 103 (1988), 1171–1174. MR 0955002, 10.2307/2047105
Reference: [13] R. Kaufman: Hausdorff measure, BMO, and analytic functions.Pac. J. Math. 102 (1982), 369–371. Zbl 0511.30001, MR 0686557, 10.2140/pjm.1982.102.369
Reference: [14] S.G. Krantz: Function theory of several complex variables.John Wiley, New York, 1982. Zbl 0471.32008, MR 0635928
Reference: [15] S.G. Krantz and D. Ma: Bloch functions on strongly pseudoconvex domains.Ind. Univ. Math. J. 37 (1988), 145–163. MR 0942099, 10.1512/iumj.1988.37.37007
Reference: [16] O. Lehto and K.I. Virtanen: Boundary behaviour and normal meromorphic functions.Acta Math. 97 (1957), 47–65. MR 0087746, 10.1007/BF02392392
Reference: [17] O. Lehto and K.I. Virtanen: On the behaviour of meromorphic functions in the neighborhood of an isolated singularity.Ann. Acad. Sci. Fenn. A I Math. 240 (1957), 1–9. MR 0087747
Reference: [18] G.J. Martin: Quasiconformal and bi-lipschitz homeomorphisms, uniform domains and the quasihyperbolic metric.Trans. Amer. Math. Soc. 292 (1985), 169–191. Zbl 0584.30020, MR 0805959, 10.1090/S0002-9947-1985-0805959-2
Reference: [19] D. Minda: Bloch and normal functions on general planar regions.Holomorphic functions and moduli, Vol. I, Proc. Workshop Berkeley, CA, 1986, Math. Sci. Res. Inst. Publ. 10, D. Drasin, C.J. Earle, F.W. Gehring, I. Kra and A. Marden (eds.), Springer, New York, 1988, pp. 101–110. Zbl 0654.30025, MR 0955812
Reference: [20] E.A. Poletski${\breve{\text{i}}}$ and B.V. Shabat: Invariant metrics.Encyclopaedia of Mathematical Sciences, Vol. 9, Several complex variables III, G.M. Khenkin (ed.), Springer, Berlin, 1989, pp. 63–111.
Reference: [21] J.C. Polking: A survey of removable singularities.Seminar on Nonlinear Partial Differential Equations, Berkeley, CA, 1983, Math. Sci. Res. Inst. Publ. 2, S.S. Chern (ed.), Springer, New York, 1984, pp. 261–292. Zbl 0564.35001, MR 0765238
Reference: [22] J. Riihentaus: An extension theorem for meromorphic functions of several variables.Ann. Acad. Sci. Fenn. A I Math. 4 (1978/1979), 145–149. MR 0538096, 10.5186/aasfm.1978-79.0422
Reference: [23] J. Riihentaus: A nullset for normal functions in several variables.Proc. Amer. Math. Soc. 110 (1990), 923–933. Zbl 0755.32006, MR 1028048, 10.1090/S0002-9939-1990-1028048-0
Reference: [24] B. Shiffman: On the removal of singularities of analytic sets.Michigan Math. J. 15 (1968), 111–120. Zbl 0165.40503, MR 0224865, 10.1307/mmj/1028999912
Reference: [25] R.M. Timoney: Bloch functions in several complex variables I.Bull. London Math. Soc. 12 (1980), 241–267. Zbl 0416.32010, MR 0576974, 10.1112/blms/12.4.241
Reference: [26] M. Vuorinen: Conformal geometry and quasiregular mappings.Springer, LNM 1319, Berlin, 1988. Zbl 0646.30025, MR 0950174
.

Files

Files Size Format View
CzechMathJ_43-1993-4_12.pdf 2.046Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo