Previous |  Up |  Next

Article

Title: Natural transformations between $TTT^*M$ and $TT^*TM$ (English)
Author: Doupovec, Miroslav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 4
Year: 1993
Pages: 599-613
.
Category: math
.
MSC: 53A55
MSC: 53C05
MSC: 58A20
idZBL: Zbl 0806.53024
idMR: MR1258423
.
Date available: 2009-09-24T09:33:46Z
Last updated: 2016-04-07
Stable URL: http://hdl.handle.net/10338.dmlcz/128434
.
Reference: [1] M. Doupovec: Natural operators transforming vector fields to the second order tangent bundle.Čas. pěst. mat. 115 (1990), 64–72. Zbl 0712.58003, MR 1044015
Reference: [2] M. Doupovec: Natural transformations between $T^2_1T^*M$ and $T^*T^2_1M$.Ann. Polon. Math. 56 (1991), 67–77. Zbl 0743.53016, MR 1145571
Reference: [3] G. Kainz, P.W. Michor: Natural transformations in differential geometry.Czech. Math. J. 37 (1987), 584–607. MR 0913992
Reference: [4] P. Kobak: Natural liftings of vector fields to tangent bundles of bundles of 1-forms.Mathematica Bohemica 116 (1991), 319–326. Zbl 0743.53008, MR 1126453
Reference: [5] I. Kolář: Natural transformations of the second tangent functor into itself.Arch. Math.(Brno) XX (1984), 169–172. MR 0784868
Reference: [6] I. Kolář: On the natural operators on vector fields.Ann. Global Anal. Geom. 6 (1988), 109–117. MR 0982760, 10.1007/BF00133034
Reference: [7] I. Kolář, Z. Radziszewski: Natural transformations of second tangent and cotangent functors.Czech. Math. J. 38(113) (1988), 274–279. MR 0946296
Reference: [8] I. Kolář, M. Modugno: Torsions of connections on some natural bundles.Differential Geometry and its Applications 2 (1992), 1–16. MR 1244453
Reference: [9] I. Kolář, P.W. Michor, J. Slovák: Natural operations in differential geometry.Springer Verlag, 1993. MR 1202431
Reference: [10] M. Modugno, G. Stefani: Some results on second tangent and cotangent spaces.Quaderni dell’ Instituto di Matematica dell’ Universita di Lecce Q.16 (1978).
Reference: [11] A. Nijenhuis: Natural bundles and their general properties.Diff. Geometry in honor of K. Yano, Kinokuniya,Tokyo (1972), 317–334. Zbl 0246.53018, MR 0380862
Reference: [12] J. E. White: The method of iterated tangents with applications in local Riemannian geometry.Pitman Press, London, 1982. Zbl 0478.58002, MR 0693620
.

Files

Files Size Format View
CzechMathJ_43-1993-4_3.pdf 1.508Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo