Title:
|
Pfeffer integrability does not imply $M_1$-integrability (English) |
Author:
|
Jarník, Jiří |
Author:
|
Kurzweil, Jaroslav |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
44 |
Issue:
|
1 |
Year:
|
1994 |
Pages:
|
47-56 |
. |
Category:
|
math |
. |
MSC:
|
26A39 |
MSC:
|
26B20 |
MSC:
|
28A75 |
idZBL:
|
Zbl 0810.26009 |
idMR:
|
MR1257935 |
DOI:
|
10.21136/CMJ.1994.128454 |
. |
Date available:
|
2009-09-24T09:36:07Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128454 |
. |
Reference:
|
[1] D. J. F. Nonnenmacher: Every $M_1$-integrable function is Pfeffer integrable.Czechoslovak Math. J. 43(118) (1993) (to appear), 327–330. MR 1211754 |
Reference:
|
[2] J. Jarník, J. Kurzweil, Š. Schwabik: On Mawhin’s approach to multiple nonabsolutely convergent integral.Časopis pěst. mat. 108 (1993), 356–380. MR 0727536 |
Reference:
|
[3] W. F. Pfeffer: The divergence theorem.Trans. American Math. Soc. 295 (1986), 665–685. Zbl 0596.26007, MR 0833702, 10.1090/S0002-9947-1986-0833702-0 |
Reference:
|
[4] J. Kurzweil, J. Jarník: Differentiability and integrability in $n$ dimensions with respect to $\alpha $-regular interval.Resultate Math. 21 (1992), 138–151. MR 1146639, 10.1007/BF03323075 |
Reference:
|
[5] J. Kurzweil, J. Jarník: Generalized multidimensional Perron integral involving a new regularity condition.Resultate Math. 23 (1993), 363–373. MR 1215221, 10.1007/BF03322308 |
Reference:
|
[6] J. Kurzweil, J. Jarník: Equivalent definitions of regular generalized Perron integral.Czechoslovak Math. J. 42 (117) (1992), 365–378. MR 1179506 |
. |