Previous |  Up |  Next

Article

Title: Direct limits of cyclically ordered groups (English)
Author: Jakubík, Ján
Author: Pringerová, Gabriela
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 44
Issue: 2
Year: 1994
Pages: 231-250
.
Category: math
.
MSC: 06F15
MSC: 20F60
idZBL: Zbl 0821.06015
idMR: MR1281020
DOI: 10.21136/CMJ.1994.128465
.
Date available: 2009-09-24T09:38:08Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128465
.
Reference: [1] C.G. Chehata: An algebraically simple ordered group.Proc. London Math. Soc. 2 (1952), 183–197. Zbl 0046.02501, MR 0047031
Reference: [2] C.G. Chehata, R. Wiegandt: Radical theory for fully ordered groups.Mathematica – Rév. d’Anal. Numér. Théor. Approx. 20 (1979), no. 43, 143–157. MR 0530451
Reference: [3] V Dlab: On a family of simple ordered groups.J. Austral. Math. Soc. 8 (1968), 591–608. Zbl 0165.34502, MR 0228397, 10.1017/S1446788700006261
Reference: [4] B.J. Gardner: Some aspects of radical theory for fully ordered groups.Comment. Math. Univ. Carol. 26 (1985), 821–837. MR 0831815
Reference: [5] D. Gluschankof: Cyclic ordered groups and $MV$-algebras.Czechoslovak Math. J. 43(118) (1993), 249–263. Zbl 0795.06015, MR 1211747
Reference: [6] G. Grätzer: Universal Algebra.Princeton, 1968. MR 0248066
Reference: [7] E. Halušková: Direct limits of monounary algebras (to be submitted)..
Reference: [8] G. Higman, A.H. Stone: On inverse systems with trivial limits.J. London Math. Soc. 29 (1954), 233–236. MR 0061086, 10.1112/jlms/s1-29.2.233
Reference: [9] P.D. Hill: Relation of a direct limit group to associated vector group.Pacif. J. Math. 10 (1960), 1309–1312. MR 0122863, 10.2140/pjm.1960.10.1309
Reference: [10] P.D. Hill: Note on a direct limit group.Amer. Math. Monthly 67 (1960), 998–1000. Zbl 0111.24302, MR 0122864, 10.2307/2309231
Reference: [11] P.D. Hill: Limits of sequences of finitely generated abelain groups.Proc. Amer. Math. Soc. 12 (1961), 946–950. MR 0147543, 10.1090/S0002-9939-1961-0147543-1
Reference: [12] J. Jakubík: On the lattice of radical classes of linearly ordered groups.Studia scient. math. Hungar 19 (1981), 76–86. MR 0703644
Reference: [13] J. Jakubík: Retracts of abelian cyclically ordered groups.Archivum mathem. 25 (1989), 13–18. MR 1189194
Reference: [14] J. Jakubík, G. Pringerová: Representations of cyclically ordered groups.Časopis. pěst. matem. 113 (1988), 184–196. MR 0949044
Reference: [15] J. Jakubík, G. Pringerová: Radical classes of cyclically ordered groups.Math. Slovaca 38 (1988), 255–268. MR 0977904
Reference: [16] A.G. Kurosh: Group theory, third edition.Moskva, 1967. (Russian)
Reference: [17] V.M. Kopytov: Lattice ordered groups.Moskva, 1984. (Russian) Zbl 0567.06011, MR 0806956
Reference: [18] L. Rieger: On ordered and cyclically ordered groups, I, II, III.Věstník Král. čes. spol. nauk (1946), 1–31. (Czech) MR 0020995
Reference: [19] S. Swierczkowski: On cyclically ordered groups.Fund. Math. 47 (1959), 161–166. Zbl 0096.01501, MR 0110759, 10.4064/fm-47-2-161-166
.

Files

Files Size Format View
CzechMathJ_44-1994-2_3.pdf 2.615Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo