Previous |  Up |  Next


Title: Symmetric porosity of symmetric Cantor sets (English)
Author: Evans, Michael J.
Author: Humke, Paul D.
Author: Saxe, Karen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 44
Issue: 2
Year: 1994
Pages: 251-264
Category: math
MSC: 26A03
MSC: 26A21
MSC: 28A05
MSC: 28A99
idZBL: Zbl 0814.26003
idMR: MR1281021
DOI: 10.21136/CMJ.1994.128468
Date available: 2009-09-24T09:38:16Z
Last updated: 2020-07-29
Stable URL:
Reference: [1] M. J. Evans: Some theorems whose $\sigma $-porous exceptional sets are not $\sigma $-symmetrically porous.Real Anal. Exch. 17 (1991–92), 809–814. MR 1171425, 10.2307/44153777
Reference: [2] M. J. Evans, P. D. Humke, and K. Saxe: A symmetric porosity conjecture of L. Zajíček.Real Anal. Exch. 17 (1991–92), 258–271. MR 1147367, 10.2307/44152206
Reference: [3] M. J. Evans, P. D. Humke, and K. Saxe: A characterization of $\sigma $-symmetrically porous symmetric Cantor sets.Proc. Amer. Math. Soc (to appear). MR 1205490
Reference: [4] P. D. Humke: A criterion for the nonporosity of a general Cantor set.Proc. Amer. Math. Soc. 111 (1991), 365–372. Zbl 0723.26002, MR 1039532, 10.1090/S0002-9939-1991-1039532-9
Reference: [5] P. D. Humke and B. S. Thompson: A porosity characterization of symmetric perfect sets.Classical Real Analysis, AMS Contemporary Mathematics 42 (1985), 81–86. MR 0807980, 10.1090/conm/042/807980
Reference: [6] M. Repický: An example which discerns porosity and symmetric porosity.Real Anal. Exch. 17 (1991–92), 416–420. MR 1147383, 10.2307/44152222


Files Size Format View
CzechMathJ_44-1994-2_4.pdf 1.651Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo