Title:
|
Symmetric porosity of symmetric Cantor sets (English) |
Author:
|
Evans, Michael J. |
Author:
|
Humke, Paul D. |
Author:
|
Saxe, Karen |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
44 |
Issue:
|
2 |
Year:
|
1994 |
Pages:
|
251-264 |
. |
Category:
|
math |
. |
MSC:
|
26A03 |
MSC:
|
26A21 |
MSC:
|
28A05 |
MSC:
|
28A99 |
idZBL:
|
Zbl 0814.26003 |
idMR:
|
MR1281021 |
DOI:
|
10.21136/CMJ.1994.128468 |
. |
Date available:
|
2009-09-24T09:38:16Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128468 |
. |
Reference:
|
[1] M. J. Evans: Some theorems whose $\sigma $-porous exceptional sets are not $\sigma $-symmetrically porous.Real Anal. Exch. 17 (1991–92), 809–814. MR 1171425, 10.2307/44153777 |
Reference:
|
[2] M. J. Evans, P. D. Humke, and K. Saxe: A symmetric porosity conjecture of L. Zajíček.Real Anal. Exch. 17 (1991–92), 258–271. MR 1147367, 10.2307/44152206 |
Reference:
|
[3] M. J. Evans, P. D. Humke, and K. Saxe: A characterization of $\sigma $-symmetrically porous symmetric Cantor sets.Proc. Amer. Math. Soc (to appear). MR 1205490 |
Reference:
|
[4] P. D. Humke: A criterion for the nonporosity of a general Cantor set.Proc. Amer. Math. Soc. 111 (1991), 365–372. Zbl 0723.26002, MR 1039532, 10.1090/S0002-9939-1991-1039532-9 |
Reference:
|
[5] P. D. Humke and B. S. Thompson: A porosity characterization of symmetric perfect sets.Classical Real Analysis, AMS Contemporary Mathematics 42 (1985), 81–86. MR 0807980, 10.1090/conm/042/807980 |
Reference:
|
[6] M. Repický: An example which discerns porosity and symmetric porosity.Real Anal. Exch. 17 (1991–92), 416–420. MR 1147383, 10.2307/44152222 |
. |