Previous |  Up |  Next

Article

Title: On infinite partition representations and their finite quotients (English)
Author: Tůma, Jiří
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 45
Issue: 1
Year: 1995
Pages: 21-38
.
Category: math
.
MSC: 06B15
MSC: 20D30
idZBL: Zbl 0857.06002
idMR: MR1314529
DOI: 10.21136/CMJ.1995.128508
.
Date available: 2009-09-24T09:44:21Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128508
.
Reference: [1] G. Birkhoff, O. Frink: Representations of lattices by sets.Trans. Amer. Math. Soc. 64 (1948), 299–313. MR 0027263, 10.1090/S0002-9947-1948-0027263-2
Reference: [2] M. W. Liebeck, C. E. Praeger, J. Saxl: On the O’Nan-Scott theorem for finite primitive permutation groups.J. Austr. Math. Soc. A-44 (1988), 389–396. MR 0929529, 10.1017/S144678870003216X
Reference: [3] P. P. Pálfy, P. Pudlák: Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups.Algebra Universalis 11 (1980), 22–27. MR 0593011, 10.1007/BF02483080
Reference: [4] P. Pudlák, J. Tůma: Every finite lattice can be embedded in a finite partition lattice.Algebra Universalis 10 (1980), 74–95. MR 0552159, 10.1007/BF02482893
Reference: [5] J. Tůma: Some finite congruence lattices I.Czechoslovak Math. Journal 36 (1986), 298–330. MR 0831317
Reference: [6] J. Tůma: Intervals in subgroup lattices of infinite groups.J. of Algebra 125 (1989), 367–399. MR 1018952, 10.1016/0021-8693(89)90171-3
Reference: [7] J. Tůma: Partition, congruence and subgroup representations of lattices, preprint.. MR 1366875
Reference: [8] J. Tůma: A new proof of Whitman’s embedding..
.

Files

Files Size Format View
CzechMathJ_45-1995-1_3.pdf 1.774Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo