Title:
|
On infinite partition representations and their finite quotients (English) |
Author:
|
Tůma, Jiří |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
45 |
Issue:
|
1 |
Year:
|
1995 |
Pages:
|
21-38 |
. |
Category:
|
math |
. |
MSC:
|
06B15 |
MSC:
|
20D30 |
idZBL:
|
Zbl 0857.06002 |
idMR:
|
MR1314529 |
DOI:
|
10.21136/CMJ.1995.128508 |
. |
Date available:
|
2009-09-24T09:44:21Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128508 |
. |
Reference:
|
[1] G. Birkhoff, O. Frink: Representations of lattices by sets.Trans. Amer. Math. Soc. 64 (1948), 299–313. MR 0027263, 10.1090/S0002-9947-1948-0027263-2 |
Reference:
|
[2] M. W. Liebeck, C. E. Praeger, J. Saxl: On the O’Nan-Scott theorem for finite primitive permutation groups.J. Austr. Math. Soc. A-44 (1988), 389–396. MR 0929529, 10.1017/S144678870003216X |
Reference:
|
[3] P. P. Pálfy, P. Pudlák: Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups.Algebra Universalis 11 (1980), 22–27. MR 0593011, 10.1007/BF02483080 |
Reference:
|
[4] P. Pudlák, J. Tůma: Every finite lattice can be embedded in a finite partition lattice.Algebra Universalis 10 (1980), 74–95. MR 0552159, 10.1007/BF02482893 |
Reference:
|
[5] J. Tůma: Some finite congruence lattices I.Czechoslovak Math. Journal 36 (1986), 298–330. MR 0831317 |
Reference:
|
[6] J. Tůma: Intervals in subgroup lattices of infinite groups.J. of Algebra 125 (1989), 367–399. MR 1018952, 10.1016/0021-8693(89)90171-3 |
Reference:
|
[7] J. Tůma: Partition, congruence and subgroup representations of lattices, preprint.. MR 1366875 |
Reference:
|
[8] J. Tůma: A new proof of Whitman’s embedding.. |
. |