Previous |  Up |  Next

Article

Title: On the Neumann problem of one-dimensional nonlinear thermoelasticity with time-independent external forces (English)
Author: Kawashima, Shuichi
Author: Shibata, Yoshihiro
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 45
Issue: 1
Year: 1995
Pages: 39-67
.
Category: math
.
MSC: 35A05
MSC: 35B40
MSC: 35B65
MSC: 35Q72
MSC: 73B30
idZBL: Zbl 0837.35142
idMR: MR1314530
DOI: 10.21136/CMJ.1995.128510
.
Date available: 2009-09-24T09:44:29Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128510
.
Reference: [1] C. M. Dafermos and L. Hsiao: Development of singularities in solutions of the equations of nonlinear thermoelasticity.Quart. Appl. Math. 44 (1986), 463–474. MR 0860899, 10.1090/qam/860899
Reference: [2] W. Dan: On a local in time solvability of the Neumann problem of quasilinear hyperbolic parabolic coupled systems.(to appear). Zbl 0841.35003, MR 1357364
Reference: [3] W. J. Hrusa and S. A. Messaoudi: On formation of singularities in one-dimensional nonlinear thermoelasticity.Arch. Rational Mech. Anal. 111 (1990), 135–151. MR 1057652, 10.1007/BF00375405
Reference: [4] W. J. Hrusa and M. A. Tarabek: On smooth solutions of the Cauchy problem in one-dimensional nonlinear thermoelasticity.Quart. Appl. Math. 47 (1989), 631–644. MR 1031681, 10.1090/qam/1031681
Reference: [5] S. Jiang: Global existence of smooth solutions in one-dimensional nonlinear thermoelasticity.Proc. Roy. Soc. Edinburgh 115 A (1990), 257–274. Zbl 0723.35044, MR 1069521
Reference: [6] S. Jiang: Global solutions of the Dirichlet problem in one-dimensional nonlinear thermoelasticity.SFB 256 Preprint 138, Universität Bonn (1990).
Reference: [7] S. Jiang: Global solutions of the Neumann problem in one-dimensional nonlinear thermoelasticity.Nonlinear Analysis TMA 19(2) (1992), 107–121. Zbl 0786.73009, MR 1174462, 10.1016/0362-546X(92)90114-T
Reference: [8] S. Kawashima: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics.Thesis, Kyoto University (1983).
Reference: [9] S. Kawashima and M. Okada: Smooth global solutions for the one-dimensional equations in magnetohydrodynamics.Proc. Japan Acad., Ser. A 53 (1982), 384–387. MR 0694940
Reference: [10] J. E. Muñoz Rivera: Energy decay rates in linear thermoelasticity.Funkcial Ekvac 35 (1992), 19–30. MR 1172418
Reference: [11] R. Racke and Y. Shibata: Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity.Arch. Rational Mech. Anal. 116 (1991), 1–34. MR 1130241, 10.1007/BF00375601
Reference: [12] R. Racke, Y. Shibata and S. Zheng: Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity.Quart Appl. Math. 51 (1993), 751–763. MR 1247439, 10.1090/qam/1247439
Reference: [13] Y. Shibata: Neumann problem for one-dimensional nonlinear thermoelasticity.Banach Center Publication 27 (1992), 457–480. MR 1205848, 10.4064/-27-2-457-480
Reference: [14] M. Slemrod: Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity.Arch. Rational Mech. Anal. 76 (1981), 97–133. MR 0629700, 10.1007/BF00251248
Reference: [15] S. Zheng and W. Shen: Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems.Sci. Sinica, Ser. A 30 (1987), 1133–1149. MR 0942420
.

Files

Files Size Format View
CzechMathJ_45-1995-1_4.pdf 2.158Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo