Previous |  Up |  Next

Article

Title: The fundamental theorem for the $\nu_1$-integral on more general sets and a corresponding divergence theorem with singularities (English)
Author: Jurkat, W. B.
Author: Nonnenmacher, D. J. F.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 45
Issue: 1
Year: 1995
Pages: 69-77
.
Category: math
.
MSC: 26A39
MSC: 26B20
idZBL: Zbl 0832.26008
idMR: MR1314531
DOI: 10.21136/CMJ.1995.128511
.
Date available: 2009-09-24T09:44:37Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128511
.
Reference: [Fed] H. Federer: Geometric Measure Theory.Springer, New York, 1969. Zbl 0176.00801, MR 0257325
Reference: [Jar-Ku 1] J. Jarnik and J. Kurzweil: A non-absolutely convergent integral which admits $C^1$-Transformations.Časopis pro Pěstovaní Mat. 109 (1984), 157–167. MR 0744873
Reference: [Jar-Ku 2] J. Jarnik and J. Kurzweil: A non-absolutely convergent integral which admits transformation and can be used for integration on manifolds.Czech. Math. J. 35 (110) (1985), 116–139. MR 0779340
Reference: [Jar-Ku 3] J. Jarnik and J. Kurzweil: A new and more powerful concept of the $PU$-integral.Czech. Math. J. 38 (113) (1988), 8–48. MR 0925939
Reference: [Ju] W.B. Jurkat: The Divergence Theorem and Perron integration with exceptional sets.Czech. Math. J. 43 (1993), 27–45. Zbl 0789.26005, MR 1205229
Reference: [Ju-No 1] W.B. Jurkat and D.J.F. Nonnenmacher: An axiomatic theory of non-absolutely convergent integrals in $R^n$.Fund. Math. 145 (1994), 221–242. MR 1297406, 10.4064/fm-145-3-221-242
Reference: [Ju-No 2] W.B. Jurkat and D.J.F. Nonnenmacher: A generalized $n$-dimensional Riemann integral and the Divergence Theorem with singularities.Acta Sci. Math. (Szeged) 59 (1994), 241–256. MR 1285443
Reference: [No] D.J.F. Nonnenmacher: Theorie mehrdimensionaler Perron-Integrale mit Ausnahmemengen.PhD thesis, Univ. of Ulm, 1990. Zbl 0724.26010
Reference: [Pf 1] W.F. Pfeffer: The Divergence Theorem.Trans. Amer. Math. Soc. 295 (1986), 665–685. Zbl 0596.26007, MR 0833702, 10.1090/S0002-9947-1986-0833702-0
Reference: [Pf 2] W.F. Pfeffer: The Gauß-Green Theorem.Advances in Mathematics 87 (1991), no. 1, 93–147. Zbl 0732.26013, MR 1102966, 10.1016/0001-8708(91)90063-D
Reference: [Saks] S. Saks: Theory of the integral.Dover, New York, 1964. MR 0167578
.

Files

Files Size Format View
CzechMathJ_45-1995-1_5.pdf 1.116Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo