Previous |  Up |  Next

Article

Title: A descriptive definition of some multidimensional gauge integrals (English)
Author: Faure, Claude-Alain
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 45
Issue: 3
Year: 1995
Pages: 549-562
.
Category: math
.
MSC: 26A39
MSC: 26B20
idZBL: Zbl 0852.26010
idMR: MR1344520
DOI: 10.21136/CMJ.1995.128532
.
Date available: 2009-09-24T09:50:32Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128532
.
Reference: [1] C.-A. Faure, J. Mawhin: The Hake’s property for some integrals over multidimensional intervals.Preprint (1994). MR 1348084
Reference: [2] J. Jarník, J. Kurzweil: Pfeffer integrability does not imply $\text{M}_{1}$-integrability.Czech. Math. J. 44 (1994), 47–56. MR 1257935
Reference: [3] J. Jarník, J. Kurzweil, S. Schwabik: On Mawhin’s approach to multiple nonabsolutely convergent integral.Casopis Pest. Mat. 108 (1983), 356–380. MR 0727536
Reference: [4] W. B. Jurkat, R. W. Knizia: A characterization of multi-dimensional Perron integrals and the fundamental theorem.Can. J. Math. 43 (1991), 526–539. MR 1118008, 10.4153/CJM-1991-032-8
Reference: [5] W. B. Jurkat, R. W. Knizia: Generalized absolutely continuous interval functions and multi-dimensional Perron integration.Analysis 12 (1992), 303–313. MR 1182631, 10.1524/anly.1992.12.34.303
Reference: [6] J. Kurzweil, J. Jarník: Equiintegrability and controlled convergence of Perron-type integrable functions.Real Anal. Exchange 17 (1991–92), 110–139. MR 1147361
Reference: [7] J. Kurzweil, J. Jarník: Differentiability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals.Results Math. 21 (1992), 138–151. MR 1146639, 10.1007/BF03323075
Reference: [8] J. Kurzweil, J. Jarník: Equivalent definitions of regular generalized Perron integral.Czech. Math. J. 42 (1992), 365–378. MR 1179506
Reference: [9] J. Mawhin: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields.Czech. Math. J. 31 (1981), 614–632. Zbl 0562.26004, MR 0631606
Reference: [10] J. Mawhin: Analyse.De Boeck, 1992. Zbl 0759.26004, MR 1190926
Reference: [11] D. J. F. Nonnenmacher: Every $\text{M}_{1}$-integrable function is Pfeffer integrable.Czech. Math. J. 43 (1993), 327–330. MR 1211754
Reference: [12] D. J. F. Nonnenmacher: A descriptive, additive modification of Mawhin’s integral and the divergence theorem with singularities.Preprint (1993). MR 1270304
Reference: [13] W. F. Pfeffer: A Riemann-type integration and the fundamental theorem of calculus.Rend. Circ. Mat. Palermo, Ser. II 36 (1987), 482–506. Zbl 0669.26007, MR 0981151, 10.1007/BF02844902
Reference: [14] W. F. Pfeffer: The divergence theorem.Trans. Amer. Math. Soc. 295 (1986), 665–685. Zbl 0596.26007, MR 0833702, 10.1090/S0002-9947-1986-0833702-0
Reference: [15] S. Saks: Theory of the Integral.Hafner Publishing Company, 1937. Zbl 0017.30004
.

Files

Files Size Format View
CzechMathJ_45-1995-3_16.pdf 1.270Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo