Previous |  Up |  Next

Article

Title: Certain cubic multigraphs and their upper embeddability (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 45
Issue: 3
Year: 1995
Pages: 385-392
.
Category: math
.
MSC: 05C10
idZBL: Zbl 0839.05033
idMR: MR1344505
DOI: 10.21136/CMJ.1995.128539
.
Date available: 2009-09-24T09:48:28Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128539
.
Reference: [1] M. Behzad, G. Chartrand and L. Lesniak-Foster: Graphs & Digraphs.Prindle, Weber & Schmidt, Boston, 1979. MR 0525578
Reference: [2] A. D. Glukhov: On chordal-critical graphs (in Russian).Some Topological and Combinatorial Properties of Graphs, Preprint 80.8., IM AN USSR, Kiev, 1980, pp. 24–27. MR 0583198
Reference: [3] N. P. Homenko and A. D. Glukhov: One-component 2-cell embeddings and the maximum genus of a graph.Some Topological and Combinatorial Properties of Graphs, Preprint 80.8., IM AN USSR, Kiev, 1980, pp. 5–23. (Russian) MR 0583197
Reference: [4] N. P. Homenko, N. A. Ostroverkhy and V. A. Kusmenko: The maximum genus of graphs (in Ukrainian, English summary).$\phi $-Transformations of Graphs (N. P. Homenko, ed.), IM AN USSR, Kiev, 1973, pp. 180–210. MR 0422065
Reference: [5] M. Jungerman: A characterization of upper embeddable graphs.Trans. Amer. Math. Soc. 241 (1978), 401–406. Zbl 0379.05025, MR 0492309
Reference: [6] L. Nebeský: A new characterization of the maximum genus of a graph.Czechoslovak Math. J. 31(106) (1981), 604–613. MR 0631605
Reference: [7] L. Nebeský: $N_2$-locally connected graphs and their upper embeddability.Czechoslovak Math. J. 41(116) (1991), 731–735. MR 1134962
Reference: [8] L. Nebeský: Local properties and upper embeddability of connected graphs.Czechoslovak Math. J. 43(118) (1993) (to appear), 241–248. MR 1211746
Reference: [9] R. Nedela and M. Škoviera: On graphs embeddable with short faces.Topics in Combinatorics and Graph Theory, R. Bodendiek, R. Henn (eds.), Physica-Verlag, Heidelberg, 1990, pp. 519–529. MR 1100074
Reference: [10] A. T. White: Graphs, Groups, and Surfaces. Revised Edition.North-Holland, Amsterdam, 1984. MR 0780555
Reference: [11] N. H. Xuong: How to determine the maximum genus of a graph.J. Combinatorial Theory Ser. B 26 (1976), 217–225. MR 0532589, 10.1016/0095-8956(79)90058-3
.

Files

Files Size Format View
CzechMathJ_45-1995-3_1.pdf 787.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo