Previous |  Up |  Next

Article

Title: On adjoining units to hyper-archimedean $l$-groups (English)
Author: Conrad, Paul
Author: Martinez, Jorge
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 45
Issue: 3
Year: 1995
Pages: 503-516
.
Category: math
.
MSC: 06D05
MSC: 06F15
MSC: 06F20
MSC: 20F60
idZBL: Zbl 0842.06013
idMR: MR1344517
DOI: 10.21136/CMJ.1995.128540
.
Date available: 2009-09-24T09:50:09Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128540
.
Reference: [AF] M. Anderson, T. Feil: Lattice Ordered Groups.Reidel Publ. Co., Dordrecht, 1988. MR 0937703
Reference: [Be] S. J. Bernau: The lateral completion of arbitrary lattice-ordered groups.Jour. Austral. Math. Soc. 19 (1975), 263–289. MR 0384640, 10.1017/S1446788700031463
Reference: [BKW] A. Bigard, K. Keimel, S. Wolfenstein: Groupes et Anneaux Réticulès.Lecture Notes in Math. 608, Springer Verlag, Berlin-Heidelberg-New York, 1977. MR 0552653
Reference: [BiD] J. P. Bixler, M. Darnel: Special-valued $l$-groups.Alg. Univ. 22 (1986), 230–239. MR 0870466, 10.1007/BF01224024
Reference: [C1] P. Conrad: A characterization of lattice-ordered groups by their convex $l$-subgroups.Jour. Austral. Math. Soc. 7 (1967), 145–159, MP 35:5371. Zbl 0154.27001, MR 0214521, 10.1017/S1446788700005528
Reference: [C2] P. Conrad: The lateral completion of a lattice-ordered group.Proc. London Math. Soc. 19 (1969), 444–480. Zbl 0182.04803, MR 0244125, 10.1112/plms/s3-19.3.444
Reference: [C3] P. Conrad: The essential closure of an archimedean lattice-ordered group.Duke Math. Jour. 38 (1971), 151–160. Zbl 0216.03104, MR 0277457
Reference: [C4] P. Conrad: Epi-archimedean groups.Czech. Math. Jour. 24 (1974), 1–27. Zbl 0319.06009, MR 0347701
Reference: [CHH] P. Conrad, J. Harvey, W. C. Holland: The Hahn embedding theorem for abelian lattice-ordered groups.Trans. AMS 108 (1963), 143–169. MR 0151534, 10.1090/S0002-9947-1963-0151534-0
Reference: [CM1] P. Conrad, J. Martinez: Complemented lattice-ordered groups.Indag. Math. (New Series) 1 (1990), no. 3, 281–297. MR 1075880, 10.1016/0019-3577(90)90019-J
Reference: [CM2] P. Conrad, J. Martinez: Settling a number of questions about hyper-archimedean lattice-ordered groups.Proc. AMS 109 (June 1990), no. 2, 291–296. MR 0998733
Reference: [CM3] P. Conrad, J. Martinez: Complementing lattice-ordered groups: the projectable case.Order 7 (1990), 183–203. MR 1101776, 10.1007/BF00383766
Reference: [CM4] P. Conrad, J. Martinez: Very large subgroups of a lattice-ordered group.Comm. in Alg. 18 (1990), no. 7, 2063–2098. MR 1063126, 10.1080/00927879008824011
Reference: [CM5] P. Conrad, J. Martinez: Signatures and $S$-discrete lattice-ordered groups.Alg. Univ (to appear). MR 1201177
Reference: [M1] J. Martinez: The hyper-archimedean kernel sequence of a lattice-ordered group.Bull. Austral. Math. Soc. 10 (1974), 337–350. Zbl 0275.06026, MR 0349524, 10.1017/S0004972700041022
Reference: [M2] J. Martinez: The closed subgroup problem for lattice-ordered group.Archiv der Math. 54 (1990), 212–224. MR 1037608, 10.1007/BF01188514
Reference: [Š] F. Šik: Zur Theorie der Halbgeordneete Gruppen.Czech. Math. Jour. 10 (1960), 400–424.
.

Files

Files Size Format View
CzechMathJ_45-1995-3_13.pdf 1.516Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo