Previous |  Up |  Next

Article

Title: Hopf bifurcation and ordinary differential inequalities (English)
Author: Eisner, Jan
Author: Kučera, Milan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 45
Issue: 4
Year: 1995
Pages: 577-608
.
Category: math
.
MSC: 34A40
MSC: 34C23
MSC: 58F14
idZBL: Zbl 0848.34020
idMR: MR1354920
DOI: 10.21136/CMJ.1995.128556
.
Date available: 2009-09-24T09:50:57Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128556
.
Reference: [1] J. P. Aubin, A. Cellina: Differential Inclusions.Springer Verlag, Berlin, 1984. MR 0755330
Reference: [2] M. Bosák, M. Kučera: A bifurcation of periodic solutions to differential inequalities in $R^3$.Czechoslovak Math. J. 42 (117) (1992), 339–363. MR 1179505
Reference: [3] J. Eisner: Branching of periodic solutions to differential inequalities.Thesis, Charles University, 1991. (Czech)
Reference: [4] M. Kučera: Bifurcation points of variational inequalities.Czechoslovak Math. J. 32 (107) (1982), 208–226. MR 0654057
Reference: [5] M. Kučera: A global continuation theorem for obtaining eigenvalues and bifurcation points.Czechoslovak Math. J. 38 (133) (1988), 120–137. MR 0925946
Reference: [6] M. Kučera: Bifurcation of periodic solutions to ordinary differential inequalities.Colloquia Math. Soc. J. Bolyai 62. Differential Equations, Budapest, 1991, pp. 227–255. MR 1468758
Reference: [7] M. Kučera: Stability of bifurcating periodic solutions of differential inequalities in $R^3$.Berlin, 1994, Preprint No. 89, Institut für Angewandte Analysis und Stochastik. MR 1666194
Reference: [8] J. Kurzweil: Ordinary Differential Equations.Studies in Applied Mechanics 13, Elsevier, Amsterdam-Oxford-New York-Tokyo, 1986. Zbl 0667.34002, MR 0929466
Reference: [9] J. L. Lions: Quelques méthodes de resolution de problemes aux limites non linéaires.Paris, 1969. MR 0259693
Reference: [10] J. E. Marsden, M. Mc Cracken: The Hopf Bifurcation Theorem and Applications.Springer, Berlin, 1976. MR 0494309
Reference: [11] L. Nirenberg: Topics in Nonlinear Functional Analysis.New York, 1974. Zbl 0286.47037, MR 0488102
Reference: [12] M. Pazy: Semi-groups of nonlinear contractions in Hilbert space.Problems in Nonlinear Analysis (C.I.M.E., IV Ciclo, Varenna 1970), Edizioni Cremonese, Rome, 1971, pp. 343–430. Zbl 0228.47038, MR 0291877
Reference: [13] P. H. Rabinowitz: Some global results for non-linear eigenvalue problems.J. Functional Analysis 7 (1971), 487–513. MR 0301587, 10.1016/0022-1236(71)90030-9
Reference: [14] E. H. Zarantonello: Projections on convex sets in Hilbert space and spectral theory.Contributions to Nonlinear Functional Analysis, E. H. Zarantonello (ed.), Academic Press, New York, 1971. Zbl 0281.47043
.

Files

Files Size Format View
CzechMathJ_45-1995-4_1.pdf 3.133Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo